本次课程是由子豪兄(B站 同济子豪兄)进行讲解,以及后续的答疑。课程于B站上搜索OpenMMLab 在其官网首页可以查看。课程链接:https://www.bilibili.com/video/BV1eT411R7Jq/?spm_id_from=333.788&vd_source=a924258923caf7beb57da59b516dddec
MMSegmentation
简介
MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是OpenMMLab 项目的一部分。
主分支代码目前支持 PyTorch 1.5 以上的版本。
主要特性
统一的基准平台,我们将各种各样的语义分割算法集成到了一个统一的工具箱,进行基准测试。
模块化设计,MMSegmentation 将分割框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的分割模型。
丰富的即插即用的算法和模型,MMSegmentation 支持了众多主流的和最新的检测算法,例如 PSPNet,DeepLabV3,PSANet,DeepLabV3+ 等。
速度快,训练速度比其他语义分割代码库更快或者相当。
安装
常见问题
如果遇到问题,请参考 常见问题解答。
使用MMSegmentation,在自己的数据集上,训练语义分割模型
数据集标注(可选)
使用Labelme、LabelU等数据标注工具,标注多类别语义分割数据集,并保存为指定的格式。
数据集整理
划分训练集、测试集
使用MMSegmentation训练语义分割模型
在MMSegmentation中,指定预训练模型,配置config文件,修改类别数、学习率。
用训练得到的模型预测
获得测试集图片或新图片的语义分割预测结果,对结果进行可视化和后处理。
在测试集上评估算法的速度和精度性能
使用MMDeploy部署语义分割模型(可选)
本课代码
MMSegmentation是openmmlab中专门用于做语义分割的算法库。
Github链接:https://github.com/TommyZihao/MMSegmentation_Tutorials/tree/main/20230206
MMSegmentation_Tutorials/【A】安装配置MMSegmentation.ipynb
MMSegmentation_Tutorials/【B1】预训练语义分割模型预测-单张图像-命令行.ipynb
MMSegmentation_Tutorials/【B2】预训练语义分割模型预测-单张图像-Python
MMSegmentation_Tutorials/【B3】预训练语义分割模型预测-视频.ipynb
MMSegmentation_Tutorials/【C】在自己的数据集上训练语义分割模型.ipynb
MMSegmentation_Tutorials/20230206/【D】Kaggle小鼠肾小球切片语义分割
MMSegmentation_Tutorials/【D1】下载数据集.ipynbs
MMSegmentation_Tutorials/【D2】探索数据集.ipynb
MMSegmentation_Tutorials/【D3】划分训练集和测试集.ipynb
MMSegmentation_Tutorials/【D4】MMSeg训练语义分割模型.ipynb
MMSegmentation_Tutorials/【D5】用训练得到的模型预测.ipynb
MMSegmentation_Tutorials/【D6】测试集性能评估.ipynb
MMSegmentation_Tutorials/【Z】扩展阅读.ipynb
MMSegmentation_Tutorials/【Z2】MMSegmentation代码实战作业.ipynb