【OpenMMLab】打卡笔记7 -- MMSegmentation介绍 & 代码实践

MMSegmentation简介

  • 项目地址:https://github.com/open-mmlab/mmsegmentation
  • 文档:https://mmsegmentation.readthedocs.io/en/latest/
    在这里插入图片描述

MMSegmentation的项目结构

  • 整体架构在这里插入图片描述
  • 分割模型的模块化设计
    MMSegmentation 将分割模型统一拆解为如下模块,方便用户根据自己的需求进行组装和扩展。在这里插入图片描述

MMSegmentation代码实践

1. 配置环境

1)使用conda创建虚拟环境

# 创建 python=3.8 的det环境 
conda create --name mmsegmentation python=3.8
# 激活环境 
source activate mmsegmentation

2)安装torch

# 安装 torch
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

3)安装mmcv
mmcv模块安装时候需要注意 torch 和 cuda 版本,参考安装文档https://mmcv.readthedocs.io/zh_CN/latest/get_started/installation.html

pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.13/index.html
pip install mmengine

4)安装MMSegmentation模块(从源码)

git clone https://github.com/open-mmlab/mmsegmentation.git
# git clone https://github.com/open-mmlab/mmsegmentation.git -b dev-1.x
cd mmsegmentation
# "-v "指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。
pip install -v -e .

2. 创建数据集

1)下载数据集

# 进入mmsgementation目录
cd mmsegmentation
# 创建data目录
mkdir data && cd data

# 下载数据集
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20230130-mmseg/dataset/Glomeruli-dataset.zip
# 解压
unzip Glomeruli-dataset.zip

2)划分数据集

# 进入mmsgementation目录
cd mmsegmentation

# 创建脚本
vim split_data.py

# 执行数据划分
python split_data.py

split_data.py

import os
import random


# 获取全部数据文件名列表
PATH_IMAGE = 'data/Glomeruli-dataset/images'

all_file_list = os.listdir(PATH_IMAGE)
all_file_num = len(all_file_list)

# 随机打乱全部数据文件名列表
random.shuffle(all_file_list)


# 指定训练集和测试集比例
train_ratio = 0.8
test_ratio = 1 - train_ratio
train_file_list = all_file_list
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值