用于大规模网络社团检测的近线性时间算法

文章介绍了用于大规模网络社团检测的近线性时间算法,该算法基于标签传播,通过节点间标签的同步和异步更新,形成社区共识。不需要预先知道社团数量和大小,算法结果自然决定。在不断迭代中,最终拥有相同标签的节点将组成一个社团,实现网络的划分。
摘要由CSDN通过智能技术生成

基于标签传播的局部社区检测算法

原论文题目:Near linear time algorithm to detect community structures in large-scale networks


  • 内容概要:
      文中提出了基于标签传播的局部社区检测算法,每个节点使用唯一的标签进行初始化,在算法的每轮迭代中,统计每个节点的邻居的标签的频数,采纳其邻居的最大频数的标签作为新标签,并随机使用一致的方法打破纽带,在这种方式下,标签在整个网络当中传播,紧密相连的节点组在标签上形成共识,最后,有着一样的标签的节点组成一个社区;可以看出,该算法非常简单高效,使用网络结构指导社团检测过程,不用优化任何关于社团强度的指标,并且,社团数目和社团大小不是作为算法的先验知识,而是由算法结果决定的。

  • 算法思想
      假设节点的邻居是 ,每个节点的标签表明其所属的社团,由其邻居的标签决定其所属的社团,文中假设节点会选择加入其具有最大标签数邻居所属的社团。首先使用唯一的标签初始化每个节点,让标签在整个网络当中传播,随着标签的传播,紧密相连的节点群会迅速以唯一的标签形成共识,当网络当中形成很多这样的密集组时,它们会继续向外扩展,最后,拥有相同标签的节点组成一个社团。

  • 标签更新方式
    同步更新:
      在第i次迭代时,节点 x x 基于其邻居在第i-1次时的标签来更新其标签:
    C x ( t ) = f ( C x 1 ( t 1 ) , C x 2 ( t 1 ) , . . . , C x k ( t 1 ) )

    同步更新的问题是若网络中的子图是二部图或近似二部图的结构会造成标签震荡,在社区以星形的结构出现时尤其如此,因此文中使用异步更新方式。

    异步更新
    Cx(t)=f(Cxi1(t),..
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值