Paper Notes: Near linear time algorithm to detect community structures in large-scale networks

Paper title: Near linear time algorithm to detect community structures in large-scale networks

Author: UN Raghavan, R Albert, S Kumara

Year: 2007

Journal: Physical Review

My notes: 


This paper adopts the idea of label propagation in networks to find the community structure. Each node is first initialized with a unique label and then in each iterative process every node adopts the label that most of its neighbors have. 
The algorithm has synchronous and asynchronous versions according to two different label updating strategies. But synchronous method will lead to a label oscillation problem particularly in networks having bi-partite or nearly bi-partite structure. Thus asynchronous versions are used in this paper. 
Validations are performed on 6 networks:

Network Size
Zachary’s karate club network34
US college football network115
Co-authorship network16726
Actor collaboration network374511
Protein-protein interaction network 2115
Word wide web 325729




The time complexity of the label propagation algorithm is near linear. Initialization takes O(n) time and each iteration of label propagation takes linear time O(m) ( n is the number of node and m is the number of edges in the network). 


Mobile Edge Computing (MEC) is an emerging paradigm that enables computation and storage resources to be brought closer to the end-users in a wireless network. Unmanned Aerial Vehicles (UAVs) have been introduced in MEC systems to enhance network connectivity, coverage, and capacity. In this paper, we propose a novel approach to optimize the deployment of multiple UAVs in a three-dimensional space to minimize the task completion time in UAV-enabled MEC systems. We formulate the problem as a mixed-integer linear program (MILP), where the objective is to minimize the task completion time subject to resource constraints and safety regulations. The MILP considers the UAVs' positions, velocities, and orientations, as well as the task locations and requirements. We also consider the communication delay between the UAVs and the MEC servers and the energy consumption of the UAVs. To solve the MILP, we propose a two-stage algorithm that first generates an initial solution using a heuristic algorithm and then refines it using a local search algorithm. The heuristic algorithm generates a set of candidate solutions by selecting the UAVs' positions randomly and then optimizing the orientations and velocities to minimize the task completion time. The local search algorithm improves the solutions by iteratively moving the UAVs to nearby locations and checking if the task completion time is reduced. We evaluate the proposed approach using a simulation environment that mimics a real-world scenario. The results show that the proposed approach can significantly reduce the task completion time compared to the baseline approaches. Moreover, the proposed approach can adapt to the changes in the task requirements and the network conditions. In conclusion, the proposed approach can optimize the deployment of multiple UAVs in a three-dimensional space to minimize the task completion time in UAV-enabled MEC systems. The approach can be used in various applications, such as disaster response, surveillance, and precision agriculture.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值