【bzoj1670】[Usaco2006 Oct]Building the Moat护城河的挖掘 求凸包

Description

为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场周围挖一条护城河。农场里一共有N(8<=N<=5,000)股泉水,并且,护城河总是笔直地连接在河道上的相邻的两股泉水。护城河必须能保护所有的泉水,也就是说,能包围所有的泉水。泉水一定在护城河的内部,或者恰好在河道上。当然,护城河构成一个封闭的环。 挖护城河是一项昂贵的工程,于是,节约的FJ希望护城河的总长度尽量小。请你写个程序计算一下,在满足需求的条件下,护城河的总长最小是多少。 所有泉水的坐标都在范围为(1..10,000,000,1..10,000,000)的整点上,一股泉水对应着一个唯一确定的坐标。并且,任意三股泉水都不在一条直线上。 以下是一幅包含20股泉水的地图,泉水用”*”表示

http://www.lydsy.com/JudgeOnline/upload/201409/111.jpg
图中的直线,为护城河的最优挖掘方案,即能围住所有泉水的最短路线。 路线从左上角起,经过泉水的坐标依次是:(18,0),(6,-6),(0,-5),(-3,-3),(-17,0),(-7,7),(0,4),(3,3)。绕行一周的路径总长为70.8700576850888(…)。答案只需要保留两位小数,于是输出是70.87。

Input

  • 第1行: 一个整数,N * 第2..N+1行: 每行包含2个用空格隔开的整数,x[i]和y[i],即第i股泉水的位 置坐标

Output

  • 第1行: 输出一个数字,表示满足条件的护城河的最短长度。保留两位小数

Sample Input

20

2 10

3 7

22 15

12 11

20 3

28 9

1 12

9 3

14 14

25 6

8 1

25 1

28 4

24 12

4 15

13 5

26 5

21 11

24 4

1 8

Sample Output

70.87

HINT

Source

凸包 卡壳


裸题…
原谅我这么晚学凸包…
模板挺好写的…

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long LL;
const int SZ = 1000010;
const int INF = 1000000010;
const double eps = 1e-6;

struct point{
    double x,y;
}p[SZ],S[SZ];

double pw2(double x)
{
    return x * x;
}
point operator -(const point &a,const point &b)
{
    return (point){a.x - b.x,a.y - b.y};
}

double operator *(const point &a,const point &b)
{
    return a.x * b.y - a.y * b.x;
}

double dist(const point &a,const point &b)
{
    return sqrt(pw2(a.x - b.x) + pw2(a.y - b.y));
}

bool cmp(const point &a,const point &b)
{
    double t = (a - p[1]) * (b - p[1]);
    if(fabs(t) < eps)
        return dist(a,p[1]) < dist(b,p[1]);
    return t < 0;
}

int n;

double graham()
{
    int k = 1;
    for(int i = 2;i <= n;i ++)
        if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
            k = i;
    swap(p[1],p[k]);
    sort(p + 2,p + 1 + n,cmp);
    int top = 0;
    S[++ top] = p[1]; S[++ top] = p[2];
    for(int i = 3;i <= n;i ++)
    {
        while(top > 1 && (p[i] - S[top - 1]) * (S[top] - S[top - 1]) < 0)
            top --;
        S[++ top] = p[i];
    }
    double ans = 0;
    for(int i = 1;i <= top;i ++)
        ans += dist(S[i],S[i == top ? 1 : i + 1]);
    return ans;
}

int main()
{
    scanf("%d",&n);
    for(int i = 1;i <= n;i ++)
        scanf("%lf%lf",&p[i].x,&p[i].y);
    printf("%.2lf",graham());
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所的就是点 $1$ 到点 $n$ 的最短路,并且我们已经出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值