点击就送屠龙宝刀
题目描述 Description
输入b,p,k的值,编程计算bp mod k的值。其中的b,p,k*k为长整型数(2^31范围内)。
输入描述 Input Description
b p k
输出描述 Output Description
输出b^p mod k=?
=左右没有空格
样例输入 Sample Input
2 10 9
样例输出 Sample Output
2^10 mod 9=7
只能说codevs数据好水。。快速幂都能过。。首先我们来讨论正解。
已知b^p mod k =b mod k ^ pmod k 但是这样还是存在炸long long 的情况。然后我们继续优化。因为有a*b mod c = (a mod c)*(b mod c) 所以我们可以把b^p拆成p个b相乘。然后你发现因为k*k在int内可以过了。。
那我们再来扩展这道题。如果k*k超过了long long 该怎么办呢?(其实是有例题的但是我懒得找了。。。) 我们可以用二进制的思想,把p拆成2^ai+2^bi+2^ci……+2^0.因为mod操作满足(a+b)mod c =(a mod c +b mod c) mod c 那么我们就可以得到答案了。(什么?输入的是高精?敲个高精加高精模高精乘不就完了??)
废话不说了贴这道题代码。。(傻逼快速幂的题目。。难度钻石)
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=(int)1e5+10,MOD=99999997;
int n;
int p[maxn];
long long c[maxn];
int fuckdc(int i)
{
return i&(-i);
}
long long sum(int wtf)
{
long long dc=0;
while(wtf>0) dc+=c[wtf],wtf-=fuckdc(wtf);
return dc;
}
long long add(int i,int x)
{
while(i<=n) c[i]+=x,i+=fuckdc(i);
}
struct Node{
int num,id;
int dc(int a,int b){ num=a,id=b;}
}dc[maxn],wtf[maxn],fuck_[maxn];
bool operator <(Node a,Node b)
{
return a.num^b.num?a.num>b.num:a.id>b.id;
}
int main()
{
int i,x;
long long ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&x),dc[i].dc(x,i);
for(int i=1;i<=n;i++) scanf("%d",&x),wtf[i].dc(x,i);
sort(dc+1,dc+n+1);
sort(wtf+1,wtf+n+1);
for(int i=1;i<=n;i++) fuck_[dc[i].id].dc(n-i+1,dc[i].id),p[n-i+1]=wtf[i].id;
for(int i=1;i<=n;i++) dc[i].dc(p[fuck_[i].num],i);
sort(dc+1,dc+n+1);
for(int i=1;i<=n;i++) ans+=sum(dc[i].id),ans%=MOD,add(dc[i].id,1);
printf("%lld",ans);
return 0;
}