[Luogu P3379]【模板】最近公共祖先(LCA)

14 篇文章 0 订阅

洛谷传送门

题目描述

如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。

输入输出格式
输入格式:

第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。

接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。

接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。

输出格式:

输出包含M行,每行包含一个正整数,依次为每一个询问的结果。

输入输出样例

输入样例
5 5 4
3 1
2 4
5 1
1 4
2 4
3 2
3 5
1 2
4 5

输出样例
4
4
1
4
4

解题分析:

树剖LCA板子…

不过其与树剖的dfs和查询有异曲同工之妙, 推荐阅读

隔壁ShadyPi dalao的Tarjan LCA 算法 ( O(N+M) O ( N + M ) ) %%% 前往阅读

代码如下:

#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#define MX 500005
#define gc getchar()
#define R register
#define W while
#define IN inline
namespace LCA
{
    int topf[MX], fat[MX], dep[MX], head[MX], son[MX], cnt, tot[MX];
    struct Edge
    {
        int to, nex;
    }edge[MX << 1];
    IN void addedge(const int &from, const int &to)
    {
        edge[++cnt] = (Edge){to, head[from]};
        head[from] = cnt;
    }
    int dfs1(int now, int fa, int dp)
    {
        dep[now] = dp;
        fat[now] = fa;
        tot[now] = 1;
        int ms = -1;
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(edge[i].to == fa) continue;
            tot[now] += dfs1(edge[i].to, now, dp + 1);
            if(ms < tot[edge[i].to]) son[now] = edge[i].to, ms = tot[edge[i].to];
        }
        return tot[now];
    }
    void dfs2(int now, int grand)
    {
        topf[now] = grand;
        if(!son[now]) return;
        dfs2(son[now], grand);
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(edge[i].to == fat[now]) continue;
            if(edge[i].to == son[now]) continue;
            dfs2(edge[i].to, edge[i].to);
        }
    }
    IN int query(int x, int y)
    {
        int prex = x, prey = y;
        W (topf[x] != topf[y])
        {
            if(dep[topf[x]] < dep[topf[y]]) prey = y, y = fat[topf[y]];
            else prex = x, x = fat[topf[x]];
        }
        if(dep[x] < dep[y]) return x;
        return y;
    }
}
using namespace LCA;
int main()
{
    int num, a, b, root, q;
    scanf("%d%d%d", &num, &q, &root);
    for (R int i = 1; i < num; ++i)
    {
        scanf("%d%d", &a, &b);
        addedge(a, b);
        addedge(b, a);
    }
    dfs1(root, 0, 1);
    dfs2(root, root);
    for (R int i = 1; i <= q; ++i)
    {
        scanf("%d%d", &a, &b);
        printf("%d\n", query(a, b));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值