[Luogu] [HNOI/AHOI2018] 道路

题目描述

W 国的交通呈一棵树的形状。W 国一共有 n1 n − 1 个城市和 n n 个乡村,其中城市从 1 n1 n − 1 编号,乡村从 1 1 n 编号,且 1 1 号城市是首都。道路都是单向的,本题中我们只考虑从乡村通往首都的道路网络。对于每一个城市,恰有一条公路和一条铁路通向这座城市。对于城市i, 通向该城市的道路(公路或铁路)的起点,要么是一个乡村,要么是一个编号比 i 大的城市。 没有道路通向任何乡村。除了首都以外,从任何城市或乡村出发只有一条道路;首都没有往 外的道路。从任何乡村出发,沿着唯一往外的道路走,总可以到达首都。

W 国的国王小 W 获得了一笔资金,他决定用这笔资金来改善交通。由于资金有限,小 W 只能翻修 n1 n − 1 条道路。小 W 决定对每个城市翻修恰好一条通向它的道路,即从公路和铁 路中选择一条并进行翻修。小 W 希望从乡村通向城市可以尽可能地便利,于是根据人口调 查的数据,小 W 对每个乡村制定了三个参数,编号为 i i 的乡村的三个参数是 ai bi b i ci c i 。假设 从编号为 i i 的乡村走到首都一共需要经过 x 条未翻修的公路与 y y 条未翻修的铁路,那么该乡村 的不便利值为

ci(ai+x)(bi+y)

在给定的翻修方案下,每个乡村的不便利值相加的和为该翻修方案的不便利值。 翻修 n1 n − 1 条道路有很多方案,其中不便利值最小的方案称为最优翻修方案,小 W 自然 希望找到最优翻修方案,请你帮助他求出这个最优翻修方案的不便利值。

输入输出格式

输入格式:

第一行为正整数 n n

接下来 n1 行,每行描述一个城市。其中第 i i 行包含两个数 si,ti si s i 表示通向第 i i 座城市 的公路的起点, ti 表示通向第i座城市的铁路的起点。如果 si>0 s i > 0 ,那么存在一条从第 si s i 座城 市通往第 i i 座城市的公路,否则存在一条从第 si 个乡村通往第i座城市的公路; 类似地,如 果 ti<0 t i < 0 ,那么存在一条从第 ti t i 座城市通往第i座城市的铁路,否则存在一条从第 ti − t i 个乡村通 往第 i i 座城市的铁路。

接下来 n 行,每行描述一个乡村。其中第i行包含三个数 ai,bi,ci a i , b i , c i ,其意义如题面所示。

输出格式:

输出一行一个整数,表示最优翻修方案的不便利值。

输入输出样例

输入样例#1: 复制
6 
2 3 
4 5 
-1 -2 
-3 -4 
-5 -6 
1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1
输出样例#1: 复制
54

输入样例#2: 复制
9 
2 -2 
3 -3 
4 -4 
5 -5 
6 -6 
7 -7 
8 -8 
-1 -9 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1
输出样例#2: 复制
548

输入样例#3: 复制
12 
2 4 
5 3 
-7 10 
11 9 
-1 6 
8 7 
-6 -10 
-9 -4
-12 -5 
-2 -3 
-8 -11 
53 26 491 
24 58 190 
17 37 356 
15 51 997 
30 19 398 
3 45 27 
52 55 838 
16 18 931 
58 24 212 
43 25 198 
54 15 172 
34 5 524
输出样例#3: 复制
5744902

说明

【样例解释 1】

如图所示,我们分别用蓝色、黄色节点表示城市、乡村;用绿色、红色箭头分别表示 公路、铁路;用加粗箭头表示翻修的道路。

一种不便利值等于54的方法是:翻修通往城市2和城市5的铁路,以及通往其他城市的 公路。用→和⇒表示公路和铁路,用∗→和∗⇒表示翻修的公路和铁路,那么:

编号为1的乡村到达首都的路线为:-1 ∗→ 3 ⇒ 1,经过0条未翻修公路和1条未翻修铁 路,代价为3 × (1 + 0) × (2 + 1) = 9;
编号为2的乡村到达首都的路线为:-2 ⇒ 3 ⇒ 1,经过0条未翻修公路和2条未翻修铁 路,代价为2 × (1 + 0) × (3 + 2) = 10;
编号为3的乡村到达首都的路线为:-3 ∗→ 4 → 2 ∗→ 1,经过1条未翻修公路和0条未 翻修铁路,代价为3 × (2 + 1) × (1 + 0) = 9;
编号为4的乡村到达首都的路线为:-4 ⇒ 4 → 2 ∗→ 1,经过1条未翻修公路和1条未翻 修铁路,代价为1 × (2 + 1) × (3 + 1) = 12;
编号为5的乡村到达首都的路线为:-5 → 5 ∗⇒ 2 ∗→ 1,经过1条未翻修公路和0条未 翻修铁路,代价为2 × (3 + 1) × (1 + 0) = 8;
编号为6的乡村到达首都的路线为:-6 ∗⇒ 5 ∗⇒ 2 ∗→ 1,经过0条未翻修公路和0条未翻修铁路,代价为1 × (3 + 0) × (2 + 0) = 6;

总的不便利值为9 + 10 + 9 + 12 + 8 + 6 = 54。可以证明这是本数据的最优解。

【样例解释 2】

在这个样例中,显然应该翻修所有公路。

【数据范围】 一共20组数据,编号为1 ∼ 20。 对于编号 4 ≤ 4 的数据, n20 n ≤ 20
对于编号为5 ∼ 8的数据, ai,bi,ci5 a i , b i , c i ≤ 5 n50 n ≤ 50
对于编号为9 ∼ 12的数据, n2000 n ≤ 2000
对于所有的数据, n20000 n ≤ 20000 1ai,bi60 1 ≤ a i , b i ≤ 60 1ci109 1 ≤ c i ≤ 10 9 si,ti s i , t i [n,1](i,n1] [ − n , − 1 ] ∪ ( i , n − 1 ] 内的整数,任意乡村可以通过不超过40条道路到达首都。

看到公式感觉很不可做啊…然后发现保证树的深度不超过40层, 那么直接暴力DP即可。

对于每个乡村, 我们计算 dp[i][j][k] d p [ i ] [ j ] [ k ] 为第 i i 个乡村经过j条未翻修的铁路和 k k 条未翻修的公路的不便利值。

对于每个城市, 我们有如下公式:

dp[i][j][k]=min(dp[leftson][j][k]+dp[rightson][j][k+1], dp[leftson][j+1][k]+dp[rightson][j][k])

即修铁路和修公路的最优值。 最后答案即为dp[1][0][0]。

不过因为深度不超过40, 我们可以滚动第一维, 卡进三级缓存, 实测比不滚动快5倍左右。

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define R register
#define gc getchar()
#define IN inline
#define W while
#define MX 50005
#define bound 20005
#define ll long long
#define ls tree[now].son[0]
#define rs tree[now].son[1]
static bool neg; static char c;
template <class T>
IN void in (T &x)
{
    x = 0; c = gc;
    W (!isdigit(c))
    {if(c == '-') neg = true; c = gc;}
    W (isdigit(c))
    {x = (x << 1) + (x << 3) + c - 48, c = gc;}
    if(neg) x = -x, neg = false;
}
template <class T>
IN T minn (const T &x, const T &y)
{return x < y ? x : y;}
struct Node
{
    int son[2];
    ll a, b, c;
}tree[MX];
ll dp[85][45][45];
int dot, st[200], tot, id[MX], top;
void DFS(int now, int x, int y)
{
    id[now] = top ? st[top--] : ++tot;//分配滚动数组下表, 若有以前用过的则复用
    if(!ls)//对于叶节点
    {
        for (R int i = 0; i <= x; ++i)
        for (R int j = 0; j <= y; ++j)
        dp[id[now]][i][j] = tree[now].a * (tree[now].b + i) * (tree[now].c + j);
        return;
    }
    DFS(ls, x + 1, y);
    DFS(rs, x, y + 1);
    for (R int i = 0; i <= x; ++i)
    for (R int j = 0; j <= y; ++j)//暴力转移
        dp[id[now]][i][j] = minn(dp[id[ls]][i + 1][j] + dp[id[rs]][i][j], dp[id[ls]][i][j] + dp[id[rs]][i][j + 1]);
    st[++top] = id[ls], st[++top] = id[rs];//将下标回收
}
int main(void)
{
    int a, b;
    in(dot);
    for (R int i = 1; i < dot; ++i)
    {
        in(a), in(b);
        tree[i].son[0] = a > 0 ? a : -a + bound;
        tree[i].son[1] = b > 0 ? b : -b + bound;
    }
    for (R int i = 1; i <= dot; ++i)
    in(tree[i + bound].b), in(tree[i + bound].c), in(tree[i + bound].a);
    DFS(1, 0, 0);
    printf("%lld", dp[id[1]][0][0]);
}

这样的题作为省选题也太毒(shui)了吧…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值