[Luogu 4149] [BZOJ 2599] [IOI 2011] race

洛谷传送门
BZOJ传送门

题目描述

给一棵树,每条边有权。求一条简单路径,权值和等于 K K ,且边的数量最小。

输入输出格式

输入格式:

第一行:两个整数 n,k

第二至 n n 行:每行三个整数,表示一条无向边的两端和权值 (注意点的编号从 0 开始)。

输出格式:

一个整数,表示最小边数量。

如果不存在这样的路径,输出 1 − 1

输入输出样例

输入样例#1:
4 3
0 1 1
1 2 2
1 3 4
输出样例#1:
2

说明

n200000,K1000000 n ≤ 200000 , K ≤ 1000000

解题分析

显然是一道点分治的裸题…因为 K1000000 K ≤ 1000000 ,所以开个数组记录同层最优解即可。

注意距离为0的最优解为0。

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cctype>
#include <limits.h>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 200500
#define INF 100000000
template <class T>
IN void in(T &x)
{
    x = 0; R char c = gc;
    W (!isdigit(c)) c = gc;
    W (isdigit(c))
    x = (x << 1) + (x << 3) + c - 48, c = gc;
}
int dot, kth, ans = INF, cnt, root, deal;
int head[MX], rec[1000050], siz[MX], fat[MX],
mx[MX], buf[MX], dep[MX], dis[MX];
bool vis[MX];
struct Edge
{
    int to, nex, len;
}edge[MX << 1];
IN void addedge(const int &from, const int &to, const int &len)
{
    edge[++cnt] = {to, head[from], len};
    head[from] = cnt;
}
namespace Dtdv
{
    void DFS(const int &now, const int &fa)
    {
        siz[now] = 1;
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(edge[i].to == fa || vis[edge[i].to]) continue;
            DFS(edge[i].to, now);
            siz[now] += siz[edge[i].to];
        }
    }
    void getroot(const int &now, const int &fa)
    {
        mx[now] = 0;
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(edge[i].to == fa || vis[edge[i].to]) continue;
            getroot(edge[i].to, now);
            mx[now] = std::max(mx[now], siz[edge[i].to]);
        }
        mx[now] = std::max(deal - siz[now], mx[now]);
        if(mx[now] < mx[root]) root = now;
    }
    void reset(const int &now, const int &fa, const bool &typ)//清零或更新
    {
        if(dis[now] <= kth)
        {
            if(typ) rec[dis[now]] = std::min(rec[dis[now]], dep[now]);
            else rec[dis[now]] = INF;
        }
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(edge[i].to == fa || vis[edge[i].to]) continue;
            reset(edge[i].to, now, typ);
        }
    }
    void calc(const int &now, const int &fa)//计算答案
    {
        if(dis[now] <= kth) ans = std::min(ans, rec[kth - dis[now]] + dep[now]);
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(vis[edge[i].to] || edge[i].to == fa) continue;
            dep[edge[i].to] = dep[now] + 1;
            dis[edge[i].to] = dis[now] + edge[i].len;
            calc(edge[i].to, now);
        }
    }
    void solve(R int now, const int &fa)
    {
        vis[now] = true; rec[0] = 0;
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(vis[edge[i].to]) continue;
            dis[edge[i].to] = edge[i].len; dep[edge[i].to] = 1;
            calc(edge[i].to, now);
            reset(edge[i].to, now, true);
        }
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(vis[edge[i].to]) continue;
            reset(edge[i].to, now, false);//注意到一层大小远小于1000000,不用memset。
        }
        for (R int i = head[now]; i; i = edge[i].nex)
        {
            if(vis[edge[i].to]) continue;
            DFS(edge[i].to, now);
            deal = siz[edge[i].to]; root = 0;
            getroot(edge[i].to, now);
            solve(root, now);
        }
    }
}
int main(void)
{
    int a, b, c;
    in(dot); in(kth); deal = mx[root = 0] = dot; memset(rec, 63, sizeof(rec));
    for (R int i = 1; i < dot; ++i)
    in(a), in(b), in(c), addedge(a + 1, b + 1, c), addedge(b + 1, a + 1, c);
    Dtdv::DFS(1, 0); Dtdv::getroot(1, 0); Dtdv::solve(root, 0);
    if(ans > 1000000) printf("-1");
    else printf("%d", ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值