[Luogu P4145] [BZOJ 3038] [BZOJ 3211] 上帝造题的七分钟2 花神游历各国

洛谷传送门
BZOJ传送门

题目背景

XLk觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。

题目描述

“第一分钟,X说,要有数列,于是便给定了一个正整数数列。

第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作。

第三分钟,k说,要能查询,于是便有了求一段数的和的操作。

第四分钟,彩虹喵说,要是noip难度,于是便有了数据范围。

第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。

第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过64位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”

——《上帝造题的七分钟·第二部》

所以这个神圣的任务就交给你了。

输入输出格式

输入格式:

第一行一个整数 n n ,代表数列中数的个数。

第二行 n 个正整数,表示初始状态下数列中的数。

第三行一个整数 m m ,表示有 m 次操作。

接下来 m m 行每行三个整数k,l,r

  • k=0表示给 [l,r]中的每个数开平方(下取整)

    • k=1表示询问 [l,r] [ l , r ] 中各个数的和。
    • 数据中有可能 l>r l > r ,所以遇到这种情况请交换l和r

      输出格式:

      对于询问操作,每行输出一个回答。

      输入输出样例

      输入样例#1:
      10
      1 2 3 4 5 6 7 8 9 10
      5
      0 1 10
      1 1 10
      1 1 5
      0 5 8
      1 4 8
      输出样例#1:
      19
      7
      6

      说明

      对于30%的数据, 1n,m1000 1 ≤ n , m ≤ 1000 ,数列中的数不超过 32767 32767

      对于100%的数据, 1n,m100000 1 ≤ n , m ≤ 100000 1l,rn 1 ≤ l , r ≤ n ,数列中的数大于 0 0 ,且不超过 1012

      注意 l l 有可能大于r,遇到这种情况请交换 l,r l , r

      解题分析

      一个 1012 10 12 的数开根大概6、7次就变成1, 所以我们维护区间最大值。 如果当前区间最大值已经为1, 则直接 return r e t u r n , 否则递归开根。

      所以大概每个点访问6次, 总复杂度为 6Nlog(N) 6 N l o g ( N ) (常数可以忽略)。

      代码如下:

      #include <cstdio>
      #include <cstring>
      #include <cstdlib>
      #include <algorithm>
      #include <cctype>
      #include <cmath>
      #define R register
      #define IN inline
      #define gc getchar()
      #define MX 100050
      #define W while
      #define ls (now << 1)
      #define rs (now << 1 | 1)
      #define ll long long
      template <class T>
      IN void in(T &x)
      {
          x = 0; R char c = gc;
          W (!isdigit(c)) c = gc;
          W (isdigit(c))
          x = (x << 1) + (x << 3) + c - 48, c = gc;
      }
      int dot, q;
      ll dat[MX];
      struct Node
      {ll sum, mx;} tree[MX << 5];
      namespace SGT
      {
          IN void pushup(const int &now)
          {
              tree[now].mx = std::max(tree[ls].mx, tree[rs].mx);
              tree[now].sum = tree[ls].sum + tree[rs].sum;
          }
          void build(const int &now, const int &lb, const int &rb)
          {
              if(lb == rb) return tree[now].sum = tree[now].mx = dat[lb], void();
              int mid = lb + rb >> 1;
              build(ls, lb, mid), build(rs, mid + 1, rb);
              pushup(now);
          }
          void modify(const int &now, const int &lef, const int &rig, const int &lb, const int &rb)
          {
              if(lef == rig)
              {
                  tree[now].sum = std::sqrt(tree[now].sum);
                  tree[now].mx = tree[now].sum;
                  return;
              }
              int mid = lef + rig >> 1;
              if(lb <= mid && tree[ls].mx > 1) modify(ls, lef, mid, lb, rb);
              if(rb > mid && tree[rs].mx > 1) modify(rs, mid + 1, rig, lb, rb);
              pushup(now);
          }
          IN ll query(const int &now, const int &lef, const int &rig, const int &lb, const int &rb)
          {
              if(lef >= lb && rig <= rb) return tree[now].sum;
              int mid = lef + rig >> 1;
              ll ret = 0;
              if(lb <= mid) ret += query(ls, lef, mid, lb, rb);
              if(rb >  mid) ret += query(rs, mid + 1, rig, lb, rb);
              return ret;
          }
      }
      int main(void)
      {
          int a, b, c;
          in(dot);
          for (R int i = 1; i <= dot; ++i) in(dat[i]);
          SGT::build(1, 1, dot);
          in(q);
          W (q--)
          {
              in(a), in(b), in(c); if(b > c) std::swap(b, c);
              if(!a) SGT::modify(1, 1, dot, b, c);
              else printf("%lld\n", SGT::query(1, 1, dot, b, c));
          }
      }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值