洛谷传送门
BZOJ传送门
题目背景
XLk觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。
题目描述
“第一分钟,X说,要有数列,于是便给定了一个正整数数列。
第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作。
第三分钟,k说,要能查询,于是便有了求一段数的和的操作。
第四分钟,彩虹喵说,要是noip难度,于是便有了数据范围。
第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。
第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过64位有符号整数类型的表示范围的限制。
第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”
——《上帝造题的七分钟·第二部》
所以这个神圣的任务就交给你了。
输入输出格式
输入格式:
第一行一个整数 n n ,代表数列中数的个数。
第二行 个正整数,表示初始状态下数列中的数。
第三行一个整数 m m ,表示有 次操作。
接下来
m
m
行每行三个整数k,l,r
,
k=0
表示给 中的每个数开平方(下取整)k=1
表示询问 [l,r] [ l , r ] 中各个数的和。数据中有可能 l>r l > r ,所以遇到这种情况请交换l和r。
输出格式:
对于询问操作,每行输出一个回答。
输入输出样例
输入样例#1:
10 1 2 3 4 5 6 7 8 9 10 5 0 1 10 1 1 10 1 1 5 0 5 8 1 4 8
输出样例#1:
19 7 6
说明
对于30%的数据, 1≤n,m≤1000 1 ≤ n , m ≤ 1000 ,数列中的数不超过 32767 32767 。
对于100%的数据, 1≤n,m≤100000 1 ≤ n , m ≤ 100000 , 1≤l,r≤n 1 ≤ l , r ≤ n ,数列中的数大于 0 0 ,且不超过 。
注意 l l 有可能大于,遇到这种情况请交换 l,r l , r 。
解题分析
一个 1012 10 12 的数开根大概6、7次就变成1, 所以我们维护区间最大值。 如果当前区间最大值已经为1, 则直接 return r e t u r n , 否则递归开根。
所以大概每个点访问6次, 总复杂度为 6Nlog(N) 6 N l o g ( N ) (常数可以忽略)。
代码如下:
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <cctype> #include <cmath> #define R register #define IN inline #define gc getchar() #define MX 100050 #define W while #define ls (now << 1) #define rs (now << 1 | 1) #define ll long long template <class T> IN void in(T &x) { x = 0; R char c = gc; W (!isdigit(c)) c = gc; W (isdigit(c)) x = (x << 1) + (x << 3) + c - 48, c = gc; } int dot, q; ll dat[MX]; struct Node {ll sum, mx;} tree[MX << 5]; namespace SGT { IN void pushup(const int &now) { tree[now].mx = std::max(tree[ls].mx, tree[rs].mx); tree[now].sum = tree[ls].sum + tree[rs].sum; } void build(const int &now, const int &lb, const int &rb) { if(lb == rb) return tree[now].sum = tree[now].mx = dat[lb], void(); int mid = lb + rb >> 1; build(ls, lb, mid), build(rs, mid + 1, rb); pushup(now); } void modify(const int &now, const int &lef, const int &rig, const int &lb, const int &rb) { if(lef == rig) { tree[now].sum = std::sqrt(tree[now].sum); tree[now].mx = tree[now].sum; return; } int mid = lef + rig >> 1; if(lb <= mid && tree[ls].mx > 1) modify(ls, lef, mid, lb, rb); if(rb > mid && tree[rs].mx > 1) modify(rs, mid + 1, rig, lb, rb); pushup(now); } IN ll query(const int &now, const int &lef, const int &rig, const int &lb, const int &rb) { if(lef >= lb && rig <= rb) return tree[now].sum; int mid = lef + rig >> 1; ll ret = 0; if(lb <= mid) ret += query(ls, lef, mid, lb, rb); if(rb > mid) ret += query(rs, mid + 1, rig, lb, rb); return ret; } } int main(void) { int a, b, c; in(dot); for (R int i = 1; i <= dot; ++i) in(dat[i]); SGT::build(1, 1, dot); in(q); W (q--) { in(a), in(b), in(c); if(b > c) std::swap(b, c); if(!a) SGT::modify(1, 1, dot, b, c); else printf("%lld\n", SGT::query(1, 1, dot, b, c)); } }