洛谷传送门
题目描述
给定有向图 G=(V,E) G = ( V , E ) 。设 P P 是 的一个简单路(顶点不相交)的集合。如果 V V 中每个顶点恰好在 的一条路上,则称 P P 是 的一个路径覆盖。 P P 中路径可以从 的任何一个顶点开始,长度也是任意的,特别地,可以为 0 0 。 的最小路径覆盖是 G G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图 的最小路径覆盖。
输入输出格式
输入格式:
第 1 1 行有个正整数 n n 和。 n n 是给定有向无环图 的顶点数, m m 是 的边数。接下来的 m m 行,每行有 个正整数i和 j j ,表示一条有向边。
输出格式:
从第 1 1 行开始,每行输出一条路径。文件的最后一行是最少路径数。
输入输出样例
输入样例#1:
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出样例#1:
1 4 7 10 11
2 5 8
3 6 9
3
说明
解题分析
我们把两个点合在一起的时候, 总的路径条数便减1。因此我们实际上是在求相邻点与点之间的最优匹配, 直接换为二分图模型。对于所有的 E(A,B) E ( A , B ) , 我们连 xA→yB x A → y B 这样一条容量为1的边。 最终最小路径数便为点数减去最优匹配数。
至于输出方案, 直接使用并查集维护所在链端即可。
代码如下:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <cstdlib>
#include <queue>
#define R register
#define IN inline
#define gc getchar()
#define W while
#define S 0
#define T 500
#define MX 505
#define INF 100000000
template <class TT>
IN void in(TT &x)
{
x = 0; R char c = gc;
W (!isdigit(c)) c = gc;
W (isdigit(c))
x = (x << 1) + (x << 3) + c - 48, c = gc;
}
int dot, line, cnt = -1;
int head[MX], layer[MX], bel[MX];
struct Edge {int from, to, fl, nex;} edge[MX * 100];
std::queue <int> q;
IN void add(R int from, R int to, R int fl)
{
edge[++cnt] = {from, to, fl, head[from]}, head[from] = cnt;
edge[++cnt] = {to, from, 0, head[to]}, head[to] = cnt;
}
int find(R int now) {return bel[now] == now ? now : bel[now] = find(bel[now]);}
IN bool BFS()
{
std::memset(layer, 0, sizeof(layer));
layer[S] = 1; q.push(S);
R int now;
W (!q.empty())
{
now = q.front(); q.pop();
for (R int i = head[now]; ~i; i = edge[i].nex)
{
if(edge[i].fl && !layer[edge[i].to])
layer[edge[i].to] = layer[now] + 1, q.push(edge[i].to);
}
}
return layer[T];
}
int DFS(R int now, R int val)
{
if(now == T) return val;
int lef = val, buf;
for (R int i = head[now]; ~i; i = edge[i].nex)
{
if(edge[i].fl && layer[edge[i].to] == layer[now] + 1)
{
buf = DFS(edge[i].to, std::min(lef, edge[i].fl));
if(!buf) continue;
lef -= buf; edge[i].fl -= buf, edge[i ^ 1].fl += buf;
if(lef <= 0) return val;
}
}
return val - lef;
}
int Dinic()
{
int ret = 0;
W (BFS()) ret += DFS(S, INF);
return ret;
}
void print(R int now)
{
printf("%d ", now);
for (R int i = head[now]; ~i; i = edge[i].nex)
if(!edge[i].fl && edge[i].to > dot) print(edge[i].to - dot);
}
int main(void)
{
int a, b;
std::memset(head, -1, sizeof(head));
in(dot), in(line);
for (R int i = 1; i <= dot; ++i) add(S, i, 1), add(i + dot, T, 1), bel[i] = i;
for (R int i = 1; i <= line; ++i)
in(a), in(b), add(a, b + dot, 1);
int ans = dot - Dinic();
for (R int i = 0; i <= cnt; ++i)
{
if(edge[i].from > 0 && edge[i].from <= dot && edge[i].to > dot && edge[i].to <= 2 * dot)
{
if(!edge[i].fl)
bel[find(bel[edge[i].to - dot])] = find(bel[edge[i].from]);
}
}
for (R int i = 1; i <= dot; ++i) if(bel[i] == i) print(i), putchar(10);
printf("%d", ans);
}