[Luogu P3868] [TJOI2009] 猜数字

洛谷传送门

题目描述

现有两组数字,每组 k k 个,第一组中的数字分别为:a1 a2 a 2 ,…, ak a k 表示,第二组中的数字分别用 b1 b 1 b2 b 2 ,…, bk b k 表示。其中第二组中的数字是两两互素的。求最小的非负整数 n n ,满足对于任意的i nai n − a i 能被 bi b i 整除。

输入输出格式

输入格式:

输入数据的第一行是一个整数 k k ,(1k10)。接下来有两行,第一行是: a1 a 1 a2 a 2 ,…, ak a k ,第二行是 b1 b 1 b2 b 2 ,…, bk b k

输出格式:

输出所求的整数 n n

输入输出样例

输入样例#1:

3
1 2 3
2 3 5

输出样例#1:

23

说明

所有数据中,第一组数字的绝对值不超过109(可能为负数),第二组数字均为不超过 6000 6000 的正整数,且第二组里所有数的乘积不超过 1018 10 18

每个测试点时限 1 1

注意:对于C/C++语言,对64位整型数应声明为long long,如使用scanf, printf函数(以及fscanf, fprintf等),应采用 %lld % l l d 标识符。

解题分析

其实是一道 CRT C R T 板题…

大概条件是这样的:

xa1(mod b1)xa2(mod b2)...xan(mod bn) x ≡ a 1 ( m o d   b 1 ) x ≡ a 2 ( m o d   b 2 ) . . . x ≡ a n ( m o d   b n )

因为 bi b i 互质, 这就好办了。 设 M=b1×b2×b3×...×bn M = b 1 × b 2 × b 3 × . . . × b n Mi=Mbi M i = M b i

对于每个 Mi M i , 我们可以求出其在 mod bi m o d   b i 意义下的逆元 invi i n v i , 那么 Mi×invi0(mod bj)(ji) M i × i n v i ≡ 0 ( m o d   b j ) ( j ≠ i ) M×invi1(mod bi) M × i n v i ≡ 1 ( m o d   b i ) , 我们的任务就完成了, 只需要每一项乘上 ai a i 就好。

后面的点会直接乘会爆 long long l o n g   l o n g , 所以就用龟速乘(其实和快速幂差不多)。

ai a i 可能为负数, 先取模并保证是正数。

代码如下:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define MX 105
#define gc getchar()
#define ll long long
bool neg;
template <class T>
IN void in(T &x)
{
    x = 0; R char c = gc;
    for (; !isdigit(c); c = gc)
    if(c == '-') neg = true;
    for (;  isdigit(c); c = gc)
    x = (x << 1) + (x << 3) + c - 48;
    if(neg) neg = false, x = -x;
}
IN ll qmul(ll a, ll b, ll mod)
{
    ll ret = 0, mul = a;
    for (R int i = 0; i <= 62; ++i, a = a * 2 % mod)
    if(b & (1ll << i)) ret = (ret + a) % mod;
    return ret;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
    if(!b) return x = 1, y = 0, void();
    exgcd(b, a % b, x, y);
    ll buf = x; x = y, y = buf - a / b * y;
}
ll md[MX], rm[MX];
int num;
IN ll CRT()
{
    ll M = 1, Mi, x, y, ans = 0;
    for (R int i = 1; i <= num; ++i) M *= md[i];
    for (R int i = 1; i <= num; ++i)
    {
        Mi = M / md[i];
        exgcd(Mi, md[i], x, y);
        x = (x % md[i] + md[i]) % md[i];
        ans = (ans + qmul(qmul(x, rm[i], M), Mi, M)) % M;
    }
    return (ans + M) % M;
}
int main(void)
{
    in(num);
    for (R int i = 1; i <= num; ++i) in(rm[i]);
    for (R int i = 1; i <= num; ++i) in(md[i]), rm[i] = (rm[i] % md[i] + md[i]) % md[i];
    printf("%lld", CRT());
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值