[Luogu P1005] 矩阵取数游戏

洛谷传送门

题目描述

帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n×m n × m 的矩阵,矩阵中的每个元素 ai,j a i , j 均为非负整数。游戏规则如下:

  1. 每次取数时须从每行各取走一个元素,共 n n 个。经过m次后取完矩阵内所有元素;
  2. 每次取走的各个元素只能是该元素所在行的行首或行尾;
  3. 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = = 被取走的元素值×2i,其中 i i 表示第i次取数(从 1 1 开始编号);
  4. 游戏结束总得分为m次取数得分之和。

帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。

输入输出格式

输入格式:

输入文件包括 n+1 n + 1 行:

1 1 行为两个用空格隔开的整数n m m

2n+1行为 n×m n × m 矩阵,其中每行有 m m 个用单个空格隔开的非负整数。

输出格式:

输出文件仅包含1行,为一个整数,即输入矩阵取数后的最大得分。

输入输出样例

输入样例#1:
2 3
1 2 3
3 4 2
输出样例#1:
82

说明

NOIP 2007 提高第三题

数据范围:

60%的数据满足: 1n,m30 1 ≤ n , m ≤ 30 ,答案不超过 1016 10 16
100%的数据满足: 1n,m80 1 ≤ n , m ≤ 80 0ai,j1000 0 ≤ a i , j ≤ 1000

解题分析

一眼 dp d p , 显然每行的取值是不会互相影响的, 所以我们分开算。

这道题可以倒着 dp d p 也可以正着 dp d p , 博主是倒着 dp d p 的。

dp[i][j] d p [ i ] [ j ] 表示当前行取 ij i ∼ j 范围内的数的最优解, 那么

dp[i][j]=max(dp[i+1][j]2+val[i]2,dp[i][j1]2+val[j]2) d p [ i ] [ j ] = m a x ( d p [ i + 1 ] [ j ] ∗ 2 + v a l [ i ] ∗ 2 , d p [ i ] [ j − 1 ] ∗ 2 + v a l [ j ] ∗ 2 )

总复杂度 O(NM2) O ( N M 2 )

至于高精度, 不存在的, 直接上__int128。

代码如下:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <cmath>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define MX 100
template <class T>
IN void in(T &x)
{
    x = 0; R char c = gc;
    for (; !isdigit(c); c = gc);
    for (;  isdigit(c); c = gc)
    x = (x << 1) + (x << 3) + c - 48;
}
__int128 dp[MX][MX];
ll mat[MX][MX];
__int128 ans;
int n, m;
__int128 solve(ll *dat)
{
    int bd;
    std::memset(dp, 0, sizeof(dp));
    for (R int i = 0; i < m; ++i)
    {
        bd = m - i;
        for (R int j = 1; j <= bd; ++j)
        dp[j][j + i] = std::max(dp[j + 1][j + i] * 2 + dat[j] * 2, dp[j][j + i - 1] * 2 + dat[j + i] * 2);
    }
    return dp[1][m];
}
void print(__int128 now)
{
    if(!now) return;
    print(now / 10);
    printf("%d", now % 10);
}
int main(void)
{
    in(n), in(m);
    for (R int i = 1; i <= n; ++i)
    for (R int j = 1; j <= m; ++j)
    in(mat[i][j]);
    for (R int i = 1; i <= n; ++i) ans = ans + solve(mat[i]);
    if(!ans) return putchar('0'), 0;
    print(ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值