[Luogu P1352] 没有上司的舞会

洛谷传送门

题目描述

某大学有 N N N个职员,编号为 1 ∼ N 1\sim N 1N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 R i R_i Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入输出格式

输入格式:

第一行一个整数N。( 1 ≤ N ≤ 6000 1\le N\le 6000 1N6000)

接下来 N N N行,第 i + 1 i+1 i+1行表示i号职员的快乐指数 R i R_i Ri。( − 128 ≤ R i ≤ 127 -128\le Ri\le 127 128Ri127)

接下来 N − 1 N-1 N1行,每行输入一对整数 L , K L,K L,K。表示 K K K L L L的直接上司。

最后一行输入 0   0 0\ 0 0 0

输出格式:

输出最大的快乐指数。

输入输出样例

输入样例#1:
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出样例#1:
5

解题分析

树上 0 / 1 D P 0/1DP 0/1DP。 设 d p [ i ] [ 0 ] dp[i][0] dp[i][0]表示不选这个点, d p [ i ] [ 1 ] dp[i][1] dp[i][1]表示选这个点, 那么转移方程为:
d p [ i ] [ 0 ] = ∑ j , j ∈ s o n [ i ] m a x ( d p [ j ] [ 0 ] , d p [ j ] [ 1 ] ) d p [ i ] [ 1 ] = ∑ j , j ∈ s o n [ i ] d p [ j ] [ 0 ] + v a l [ i ] dp[i][0]=\sum_{j,j\in son[i]}max(dp[j][0],dp[j][1]) \\ dp[i][1]=\sum_{j,j\in son[i]}dp[j][0]+val[i] dp[i][0]=j,json[i]max(dp[j][0],dp[j][1])dp[i][1]=j,json[i]dp[j][0]+val[i]
代码如下:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <cmath>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 10500
bool neg;
template <class T>
IN void in(T &x)
{
    x = 0; R char c = gc;
    for (; !isdigit(c); c = gc)
    if (c == '-') neg = true;
    for (;  isdigit(c); c = gc)
    x = (x << 1) + (x << 3) + c - 48;
    if(neg) neg = false, x = -x;
}
int dot, cnt;
int dp[MX][2], head[MX], val[MX], deg[MX];
struct Edge {int to, nex;} edge[MX << 1];
IN void add(R int from, R int to) {edge[++cnt] = {to, head[from]}, head[from] = cnt;}
void DFS(R int now)
{
    dp[now][0] = 0, dp[now][1] = val[now];
    for (R int i = head[now]; i; i = edge[i].nex)
    {
        DFS(edge[i].to);
        dp[now][0] += std::max(dp[edge[i].to][0], dp[edge[i].to][1]);
        dp[now][1] += dp[edge[i].to][0];
    }
}
int main(void)
{
    int a, b;
    in(dot);
    for (R int i = 1; i <= dot; ++i) in(val[i]);
    for (R int i = 1; i <  dot; ++i) in(a), in(b), add(b, a), ++deg[a];
    for (R int i = 1; i <= dot; ++i)
    if(!deg[i]) {DFS(i); printf("%d", std::max(dp[i][0], dp[i][1])); break;}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值