前缀和与差分

导图

前缀和

前缀和常用于快速地求解区间范围内的元素总和。

一维前缀和

设元素存储在a[N]中,我们设计一个数组s[N]s[i]对应第一个元素到第i个元素的总和,即s[i]=a[1]+a[2]+...+a[i]。

一维前缀和的维护公式为:s[i]=s[i−1]+a[i]。

若我们想快速求出区间[L,R]范围内的元素总和。

我们可以利用前缀和快速求解:sum[L,R]=s[R]−s[L−1]。

可通过图片加深理解。

二维前缀和

设元素存储在a[N][N]中,我们设计一个数组s[N][N],用来存储a[1][1]开始的矩阵总和。

s[i][j]的含义可看下图。a[N][N]为无色部分,s[N][N]为深色部分。

那么如何维护二维的前缀和数组呢?可观察下图:

可发现s[i][j]的面积由橙色区域s[i-1][j]与蓝色区域s[i][j-1]组成后,再去掉重叠部分紫色区域s[i-1][j-1]后加上本身位置的内容a[i][j]得到。

故得到公式:s[i][j]=s[i−1][j]+s[i][j−1]−s[i−1][j−1]+a[i][j]。

若我们想快速的求出某个子矩阵的元素和,可进行如下处理。

我们设子矩阵左上位置为(xa,ya),右下位置为(xb,yb)。从而确定子矩阵的形状。

观察下图,可以发现,子矩阵的总和可由红色区域s[xb][yb]去掉蓝色区域s[xb][ya-1]和橙色区域s[xa-1][yb]后,再加上重复减的紫色区域s[xa-1][ya-1]后得到。即,公式为:sum子矩阵=s[xb][yb]−s[xb][ya−1]−s[xa−1][yb]+s[xa−1][ya−1]。

差分

差分常用于对连续的某个区域快速进行增加和减少的值的操作。

一维差分

设元素存储在a[N]中,我们设计一个差分数组b[N]b[i]对应a[i]a[i-1]的差值,即b[i]=a[i]−a[i−1]。

若我们对差分数组b进行前缀和处理,可发现存在逆元特性,前缀和的内容等于原数组a的内容。

s[1]=b[1]=a[1]
s[2]=s[1]+b[2]=a[1]+a[2]-a[1]=a[2]
s[3]=s[2]+b[3]=a[2]+a[3]-a[2]=a[3]
    ...
s[i]=s[i-1]+b[i]=a[i-1]+a[i]-ba[i-1]=a[i]

若我们对b[i]的对加上x。

再进行前缀和处理。

可发现,相当于从i到最后的n,对所有的原数组内容加上了x。

故,若想对[L,R]的范围的值都加上x。可通过三步实现。

  1. b[L]+=x
  2. b[R+1]-=x
  3. 前缀和处理查分数组b

二维差分

设元素存储在a[N][N]中,我们设计一个差分数组b[N][N],用来存储a数组中相邻元素的差值。

二维差分维护公式为:b[i][j]=a[i][j]−a[i][j−1]−(a[i−1][j]−a[i−1][j−1])=a[i][j]−a[i][j−1]−a[i−1][j]+a[i−1][j−1]。

若我们对差分数组b进行前缀和处理,存在逆元特点,前缀和结果为原数组a中的内容。

若我们对差分数组b[xa][yb]+=x,再对差分数组求前缀和。可发现,(xa,ya)(n,n)的原数组内容都加上了x。

若我们想快速地对某个子矩阵区域的元素和加减值。

我们设子矩阵左上位置为(xa,ya),右下位置为(xb,yb)。从而确定子矩阵的形状。

观察下图

可发现若想对子矩阵区域加上x,可先将红色区域b[xa][ya]加上x,在将橙色区域b[xa][yb+1]与蓝色区域b[xb+1][ya]减去x进行抵消,再将重复减去的紫色区域b[xb+1][yb+1]的内容加上来。

  1. b[xa][ya]+=x
  2. b[xa][yb+1]-=x
  3. b[xb+1][ya]-=x
  4. b[xb+1][yb+1]+=x

之后再对差分数组进行前缀和处理即可。

具体案例:力扣(LCP 74. 最强祝福力场),链接:力扣

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
前缀和差分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和差分的定义、用法和常见问题。 ## 前缀和 前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 差分 差分前缀和相反,它主要用来对区间进行修改。我们可以利用差分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的差分数组。 ### 用法 差分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将差分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对差分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对差分数组的 $d_l$ 加上 $k$; 2. 对差分数组的 $d_{r+1}$ 减去 $k$; 3. 对差分数组求前缀和,得到修改后的序列。 差分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出差分数组。但是,如果有多次区间修改需要进行,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用差分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 差分数组 // 计算差分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对差分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 差分数组的长度是多少? 差分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用差分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和差分的本质区别是什么? 前缀和差分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 差分是通过预处理差分数组来优化区间修改。 ### 4. 前缀和差分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用差分数组对区间进行修改,然后再对差分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值