PAT1 1064 Complete Binary Search Tree

本文介绍了一个算法问题:给定一个无重复数字序列,构建唯一完全二叉搜索树并输出其对应的中序遍历。文章通过排序和递归求根节点的方式解决该问题,展示了具体的Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
我的github

题目大意

给一个无重复的数字序列,则这个序列可以构成一颗唯一的完全二叉搜索树,要求输出这个完全二叉搜索树的中序遍历

输入

每组包含一个测试用例

  • 第一行是一个正整数 N ≤ 1000 N\leq1000 N1000表示有 N N N个不重复的数字
  • 第二行是 N N N个不重复的数字

输出

对每个测试用例,在一行中输出这个完全二叉搜索树的中序遍历

样例输入

10
1 2 3 4 5 6 7 8 9 0

样例输出

6 3 8 1 5 7 9 0 2 4

解析

由于是一颗完全的二叉搜索树,所以我们先将输入的序列排序,则排完序之后的序列就是这个完全二叉搜索树的中序遍历,接下来就是不断递归求根节点。因为在层次遍历中,如果根节点的索引是index,那么左子树的根节点的索引就是index*2+1,右子树的根节点的索引就是index*2+2 ,所以求根就是关键。

  • 由于是完全二叉搜索树,那么左子树的所有节点都小于根节点,且左子树的节点数要不小于右子树的节点数。
  • 求根的问题就变成了求左子树的节点数的问题,这样问题就简化了很多。如何求左子树的节点数,其实画下完全二叉搜索树的图就明白了
# -*- coding: utf-8 -*- 
# @Time : 2019/6/25 10:48 
# @Author : ValarMorghulis 
# @File : 1064.py
from math import log

ans = list()
a=list()

def level(s, e, index):
    if s > e:
        return
    global ans
    tot = e - s + 1
    l = int(log(tot + 1) / log(2))
    leaves = tot - 2 ** l + 1
    root = s + min(leaves, 2 ** (l - 1)) + 2 ** (l - 1) - 1
    ans[index]=a[root]
    level(s, root - 1, index*2+1)
    level(root + 1, e, index*2+2)


def solve():
    global ans, a
    n = int(input())
    ans = [0 for i in range(n)]
    a = list(map(int, input().split()))
    a.sort()
    level(0, n - 1, 0)
    print(*ans)


if __name__ == "__main__":
    solve()

构造一个完整的二叉搜索树(Complete Binary Search Tree, CBST)涉及两个关键方面:一是确保该树是一个完全二叉树,二是满足二叉搜索树的性质。 ### 完全二叉树的特点 完全二叉树是指除最后一层外,其余每一层都被完全填充,并且所有节点都必须尽可能靠左排列。这一特征使得我们可以有效地通过数组来表示完全二叉树,其中对于任意索引i处的节点: - 其左孩子位于位置2*i+1; - 右孩子则处于位置2*i+2; ### 构建步骤概述 给定一组数值元素如列表`[7, 4, 9, 1, 5, 8, 10]`, 我们希望将其组织成一颗CBST: #### 步骤一: 对输入数据排序 首先应对原始序列进行升序排序得到 `[1, 4, 5, 7, 8, 9, 10]` #### 步骤二: 利用分治法递归生成CBST 采用类似堆排序的方式,找到中间点作为根节点(root),左侧部分构成左子树,右侧形成右子树。 例如选取上述排好序后的中间值 `7` 设为root,则左边 `[1, 4, 5]` 成为其左子树,右边 `[8, 9, 10]` 继续按同样规则处理直至每个叶节点均创建完毕为止。 ```python class TreeNode: def __init__(self, val=0): self.val = val self.left = None self.right = None def sortedArrayToBST(nums): if not nums: return None mid = len(nums) // 2 #取整数向下找中心位置 root = TreeNode(nums[mid]) root.left = sortedArrayToBST(nums[:mid]) #递归建立左半边树 root.right = sortedArrayToBST(nums[mid+1:]) #递归建立右半边树 return root ``` 这个Python示例程序展示了如何把已排序好的数组转换成为一棵平衡CBST的基本逻辑框架。 --- 如果您还有更多疑问或需要深入探讨某些细节,请随时提问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值