有符号整型的数据范围为什么负数比正数多一个?

本文通过LeetCode题目50.Pow(x,n)探讨快速幂算法实现,并深入解析有符号整型数据范围中负数比正数多一个的原因,涉及二进制表示及整型溢出处理。

背景

我们先看Leetcode的这道题目:

  • 标题:50. Pow(x, n)
  • 难度:中等
  • https://leetcode-cn.com/problems/powx-n/

实现 pow(x, n) ,即计算 x 的 n 次幂函数。

示例 1:

输入: 2.00000, 10
输出: 1024.00000

示例 2:

输入: 2.10000, 3
输出: 9.26100

示例 3:

输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

示例 4:

输入: 1.00000, -2147483648
输出: 1.00000

说明:

  • -100.0 < x < 100.0
  • n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。

思路:

我们可以利用 快速幂法 来解决该问题。假设我们要求a^b,那么b可以拆成二进制表示,例如当b = 5时,5的二进制是0101,5 = 2^3×0 + 2^2×1 + 2^1×0 + 2^0×1,因此,我们将a^5转化为算 a^(2^3×0 + 2^2×1 + 2^1×0 + 2^0×1),即a^(2^0) × a^(2^2)

我们先算出所有2的幂,然后在算出所有x的2的幂次方。再把n拆成二进制,把二进制当中对应位置是1的值乘起来,就得到了结果。这套方法称为 快速幂法

C# 实现

public class Solution
{
    public double MyPow(double x, int n)
    {
        int neg = n < 0 ? -1 : 1;
        int g = Math.Abs(n); //* 

        double[] d = new double[32];
        d[0] = x;
        for (int i = 1; i < 32; i++)
        {
            d[i] = d[i - 1] * d[i - 1];
        }

        double result = 1.0d;
        for (int i = 0; i < 32; i++)
        {
            int mask = 1 << i;
            if ((mask & g) != 0)
            {
                result *= d[i];
            }
        }
        return neg != -1 ? result : 1.0 / result;
    }
}

上面的代码看起来没有错误,但(*)这条语句溢出了。原因是 n = −2^31 取绝对值之后赋值给变量g的时候,超出了整型的最大值2^31 -1,所以产生了错误。修改为long g = Math.Abs((long)n);提交通过。

  • 执行结果:通过
  • 执行用时:56 ms, 在所有 C# 提交中击败了 51.87% 的用户
  • 内存消耗:15.1 MB, 在所有 C# 提交中击败了 50.00% 的用户

我们这里不免存在一个疑问:有符号整型的数据范围为什么负数比正数多一个?


技术分析

二进制有三种不同的表示形式:原码、反码和补码,计算机内部使用补码来表示。

  • 原码:就是其二进制表示(注意,有一位符号位)。
  • 反码:正数的反码就是原码,负数的反码是符号位不变,其余位取反。
  • 补码:正数的补码就是原码,负数的补码是反码+1。
  • 符号位:最高位为符号位,0表示正数,1表示负数。在位运算中符号位也参与运算。

为了简单起见,我们以byte类型举例。

 0 -> 00 00 00 00
-0 -> 00 00 00 00

 1 -> 00 00 00 01
-1 -> 11 11 11 11

 2 -> 00 00 00 10
-2 -> 11 11 11 10

 3 -> 00 00 00 11
-3 -> 11 11 11 01
...

 127 -> 01 11 11 11
-127 -> 10 00 00 01

可见,每一个正数都有一个对应的补码表示负数,但是通过上面的分析,我们发现-127~127(包括0也没有重复表示)共255个状态,还有一个状态 10 00 00 00 没有利用,它是多少呢?

  • 发现符号位是1,知道这是补码,是负数
  • 补码减1 得出反码 = 01111111
  • 反码取反得到原码 = 10000000=(128)

所以该数为-128。这就是有符号整型的数据范围负数比正数多一个的原因。


总结

我们从一道Leetcode题目产生溢出的异常谈起,娓娓道来整型的数据范围负数比正数多一个的缘由。只有知道其中的原理,我们写出的代码才会更加健壮和稳定。今天就到这里吧!希望对大家有帮助。See You。


往期活动

LSGO软件技术团队会定期开展提升编程技能的刻意练习活动,希望大家能够参与进来一起刻意练习,一起学习进步!


我是 终身学习者“老马”,一个长期践行“结伴式学习”理念的 中年大叔

我崇尚分享,渴望成长,于2010年创立了“LSGO软件技术团队”,并加入了国内著名的开源组织“Datawhale”,也是“Dre@mtech”、“智能机器人研究中心”和“大数据与哲学社会科学实验室”的一员。

愿我们一起学习,一起进步,相互陪伴,共同成长。

后台回复「搜搜搜」,随机获取电子资源!
欢迎关注,请扫描二维码:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青少年编程备考

感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值