【4】Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

转化为求两个有序数组第k小的数问题

假设原始数组为A[],B[].合并后的数组为S[].则若A[k/2]<B[k/2], S[k]一定不在A[0]...A[k/2]中。

一般的,若A[m]<B[n], 则S[m+n]一定不在A[0]...A[m]中。反证法即可证明

所以要求S[k],我们可先求出A[k/2]和B[k/2],然后把较小的那个数组k/2前的元素全部删掉,同时更新k(k=k-k/2,因为删去了k/2个比我们要找的数小的数)如果k/2超出了某个数组的长度,则取这个数组最后一个数拿出来进行比较

直到某个数组为空,或k=1时停止,这时我们要找的数就显而易见了。

写代码的时候时刻保持A[]为元素较少的那个数组,这样判断某个数组为空并做进一步处理时比较方便


double findkmin(vector<int>& nums1,int begin1,int m,
                vector<int>& nums2,int begin2,int n,int k){
    if(m>n)return findkmin(nums2,begin2,n,nums1,begin1,m,k);
    if(m==0)return nums2[begin2+k-1];
    if(k==1)return min(nums1[begin1],nums2[begin2]);
    int pa=min(m,k/2);
    int pb=k-pa;
    if(nums1[begin1+pa-1]<nums2[begin2+pb-1])return findkmin(nums1,begin1+pa,m-pa,nums2,begin2,n,k-pa);
    else if(nums1[begin1+pa-1]>nums2[begin2+pb-1]) return findkmin(nums1,begin1,m,nums2,begin2+pb,n-pb,k-pb);
    else return nums1[begin1+pa-1];

}

double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
    int m=nums1.size();
    int n=nums2.size();
    int t=m+n;
    if(t%2==1){return findkmin(nums1,0,m,nums2,0,n,(m+n)/2+1);}
    else return (findkmin(nums1,0,m,nums2,0,n,(m+n)/2)+findkmin(nums1,0,m,nums2,0,n,(m+n)/2+1))/2;
}

题目描述是关于寻找两个已排序数组 `nums1` 和 `nums2` 的合并后的中位数。这两个数组分别包含 `m` 和 `n` 个元素。要解决这个问题,首先我们需要合并这两个数组并保持有序,然后根据数组的总大小决定取中间值的方式。 1. 合并两个数组:由于数组是有序的,我们可以使用双指针法,一个指向 `nums1` 的起始位置,另一个指向 `nums2` 的起始位置。比较两个指针所指元素的大小,将较小的那个放入一个新的合并数组中,同时移动对应指针。直到其中一个数组遍历完毕,再将另一个数组剩余的部分直接复制到合并数组中。 2. 计算中位数:如果合并数组的长度为奇数,则中位数就是最中间的那个元素;如果长度为偶数,则中位数是中间两个元素的平均值。我们可以通过检查数组长度的奇偶性来确定这一点。 下面是Python的一个基本解决方案: ```python def findMedianSortedArrays(nums1, nums2): merged = [] i, j = 0, 0 # Merge both arrays while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: merged.append(nums1[i]) i += 1 else: merged.append(nums2[j]) j += 1 # Append remaining elements from longer array while i < len(nums1): merged.append(nums1[i]) i += 1 while j < len(nums2): merged.append(nums2[j]) j += 1 # Calculate median length = len(merged) mid = length // 2 if length % 2 == 0: # If even, return average of middle two elements return (merged[mid - 1] + merged[mid]) / 2.0 else: # If odd, return middle element return merged[mid] ``` 这个函数返回的是两个数组合并后的中位数。注意,这里假设数组 `nums1` 和 `nums2` 都是非空的,并且已经按照升序排列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值