机器学习(六):利用AdaBoost元算法提高分类性能

算法介绍

当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。机器学习处理问
题时又何尝不是如此?这就是元算法(meta-algorithm) 背后的思路。元算法是对其他算法进行组
合的一种方式。接下来我们将集中关注一个称作AdaBoost是最流行的元算法。由于某些人认为
AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一

算法实现

AdaBOOST是adaptive boosting(自适应boosting)的缩写,其运行过程如下:训练数据中的每
个样本,并赋予其一个权重,这些权重构成了向量乃。一开始,这些权重都初始化成相等值。首
先在训练数据上训练出一个弱分类器并计算该分类器的错误率,然后在同一数据集上再次训练弱
分类器。在分类器的第二次训练当中,将会重新调整每个样本的权重,其中第一次分对的样本的
权重将会降低,而第一次分错的样本的权重将会提高。为了从所有弱分类器中得到最终的分类结
果,AdaBoost为每个分类器都分配了一个权重值alpha,这些alpha值是基于每个弱分类器的错误
率进行计算的。其中,错误率£的定义为:
在这里插入图片描述
alpha的计算公式如下:
在这里插入图片描述
算法计算流程如下
在这里插入图片描述
计算出3碑&值之后,可以对权重向量乃进行更新,以使得那些正确分类的样本的权重降低而
错分样本的权重升高。D的计算方法如下。
如果某个样本被正确分类,那么该样本的权重更改为:
在这里插入图片描述
如果某个样本被错分,那么该样本的权重更改为:

在这里插入图片描述
在计算出乃之后,AdaBoost对又开始进入下一轮迭代。AdaBoost算法会不断地重复训练和调整
权重的过程,直到训练错误率为0或者弱分类器的数目达到用户的指定值为止。

代码实现

def loadSimpData():
    datMat = matrix([[1., 2.1],
                     [2., 1.1],
                     [1.3, 1.],
                     [1., 1.],
                     [2., 1.]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return datMat, classLabels


def loadDataSet(fileName):  # general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t'))  # get number of fields
    dataMat = [];
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = []
        curLine = line.strip().split('\t')
        for i in range(numFeat - 1):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat, labelMat


def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):  # just classify the data
    retArray = ones((shape(dataMatrix)[0], 1))
    if threshIneq == 'lt':
        retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
    else:
        retArray[dataMatrix[:, dimen] > threshVal] = -1.0
    return retArray


def buildStump(dataArr, classLabels, D):
    dataMatrix = mat(dataArr);
    labelMat = mat(classLabels).T
    m, n = shape(dataMatrix)
    numSteps = 10.0;
    bestStump = {};
    bestClasEst = mat(zeros((m, 1)))
    minError = inf  # init error sum, to +infinity
    for i in range(n):  # loop over all dimensions
        rangeMin = dataMatrix[:, i].min();
        rangeMax = dataMatrix[:, i].max();
        stepSize = (rangeMax - rangeMin) / numSteps
        for j in range(-1, int(numSteps) + 1):  # loop over all range in current dimension
            for inequal in ['lt', 'gt']:  # go over less than and greater than
                threshVal = (rangeMin + float(j) * stepSize)
                predictedVals = stumpClassify(dataMatrix, i, threshVal,
                                              inequal)  # call stump classify with i, j, lessThan
                errArr = mat(ones((m, 1)))
                errArr[predictedVals == labelMat] = 0
                weightedError = D.T * errArr  # calc total error multiplied by D
                print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (
                    i, threshVal, inequal, weightedError)
                if weightedError < minError:
                    minError = weightedError
                    bestClasEst = predictedVals.copy()
                    bestStump['dim'] = i
                    bestStump['thresh'] = threshVal
                    bestStump['ineq'] = inequal
    return bestStump, minError, bestClasEst


def adaBoostTrainDS(dataArr, classLabels, numIt=40):
    weakClassArr = []
    m = shape(dataArr)[0]
    D = mat(ones((m, 1)) / m)  # init D to all equal
    aggClassEst = mat(zeros((m, 1)))
    for i in range(numIt):
        bestStump, error, classEst = buildStump(dataArr, classLabels, D)  # build Stump
        # print "D:",D.T
        alpha = float(
            0.5 * log((1.0 - error) / max(error, 1e-16)))  # calc alpha, throw in max(error,eps) to account for error=0
        bestStump['alpha'] = alpha
        weakClassArr.append(bestStump)  # store Stump Params in Array
        # print "classEst: ",classEst.T
        expon = multiply(-1 * alpha * mat(classLabels).T, classEst)  # exponent for D calc, getting messy
        D = multiply(D, exp(expon))  # Calc New D for next iteration
        D = D / D.sum()
        # calc training error of all classifiers, if this is 0 quit for loop early (use break)
        aggClassEst += alpha * classEst
        # print "aggClassEst: ",aggClassEst.T
        aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T, ones((m, 1)))
        errorRate = aggErrors.sum() / m
        print "total error: ", errorRate
        if errorRate == 0.0: break
    return weakClassArr, aggClassEst


def adaClassify(datToClass, classifierArr):
    dataMatrix = mat(datToClass)  # do stuff similar to last aggClassEst in adaBoostTrainDS
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m, 1)))
    for i in range(len(classifierArr)):
        classEst = stumpClassify(dataMatrix, classifierArr[0][i]['dim'], \
                                 classifierArr[0][i]['thresh'], \
                                 classifierArr[0][i]['ineq'])  # call stump classify
        aggClassEst += classifierArr[0][i]['alpha'] * classEst
        print aggClassEst
    return sign(aggClassEst)

测试代码

if __name__ == '__main__':
    dataMat, labels = loadSimpData()
    classifierArr = adaBoostTrainDS(dataMat, labels, 30)
    result0 = adaClassify([0, 0], classifierArr)
    print(result0)

测试结果

[[-0.69314718]]
[[-1.66610226]]
[[-1.]]

总结

AdaBoost以弱学习器作为基分类器,并且输人数据,使其通过权重向量进行加权。在第一次迭代当中,所有数据都等权重。但是在后续的迭代当中,前次迭代中分错的数据的权重会增大。这种针对错误的调节能力正是AdaBoost的长处
上面以单层决策树作为弱学习器构建了AdaBoost分类器。实际上,AdaBoost函数数可以应用于任意分类器,只要该分类器能够处理加权数据即可。AdaBoost算法十分强大,它能够快速处理其他分类器很难处理的数据集。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值