论文阅读笔记-Evaluating Explanation Methods for Deep Learning in Security

本文详细介绍了面向安全领域的模型可解释性(XAI)评价标准,包括通用指标(如描述准确性、描述稀疏性)和安全特有指标(如完整性、稳定性、效率和鲁棒性)。作者通过实例展示了如何量化评估不同解释方法,并强调了这些标准在实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

前言

出处: Warnecke, Alexander, et al. “Evaluating explanation methods for deep learning in security.” 2020 IEEE european symposium on security and privacy (EuroS&P). IEEE, 2020.
代码资源: https://github.com/alewarne/explain-mlsec
一句话说明: 这篇论文提出了多个面向安全领域的模型可解释方法评价标准,其提出的指标被多篇安全领域的XAI工作引用,如xNIDS和INSOMNIA等


4. Evaluation Criteria

本文将安全领域的XAI评价指标分为两大类:通用指标General Criteria和安全领域专用的Security Criteria。在正式介绍各指标之前,本节首先解决了这样一个问题,来表明提出统一的评估标准的重要性。

所评估的方法是否会提供不同的解释结果?
即,所评估的方法是否会提供不同的解释结果?这个问题之所以重要,是因为如果不同方法产生的结果是一样的,比较的标准就不那么重要了,在实践中可以选择任何合适的方法。
所以,为了回答这一问题,本节首先提出一个叫做交叉点大小intersection size的计算指标,用于衡量不同解释方法的相似性。计算方法如下:
交叉点大小指标:衡量不同解释方法的相似性
结果如下图所示。可以看到,不同解释方法所发现的特征并不一致,因此,这些方法不能简单地互换,并且需要可测量的评估标准。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值