文章目录
前言
出处: Warnecke, Alexander, et al. “Evaluating explanation methods for deep learning in security.” 2020 IEEE european symposium on security and privacy (EuroS&P). IEEE, 2020.
代码资源: https://github.com/alewarne/explain-mlsec
一句话说明: 这篇论文提出了多个面向安全领域的模型可解释方法评价标准,其提出的指标被多篇安全领域的XAI工作引用,如xNIDS和INSOMNIA等
4. Evaluation Criteria
本文将安全领域的XAI评价指标分为两大类:通用指标General Criteria和安全领域专用的Security Criteria。在正式介绍各指标之前,本节首先解决了这样一个问题,来表明提出统一的评估标准的重要性。
即,所评估的方法是否会提供不同的解释结果?这个问题之所以重要,是因为如果不同方法产生的结果是一样的,比较的标准就不那么重要了,在实践中可以选择任何合适的方法。
所以,为了回答这一问题,本节首先提出一个叫做交叉点大小intersection size的计算指标,用于衡量不同解释方法的相似性。计算方法如下:
结果如下图所示。可以看到,不同解释方法所发现的特征并不一致,因此,这些方法不能简单地互换,并且需要可测量的评估标准。