前言
`上一篇写了可解释AI在安全领域的评估标准,并提到有多个工作引用了上一篇提出的各种标准。今天我们就来介绍来自USENIX2023的一篇安全领域可解释工作,xNIDS:解释DL-based NIDS以主动响应入侵。
从题目中就可以看到,本文除了解释DL-based NIDS,还把重点放在了 基于解释结果,设计入侵响应规则 上。话不多说,还是先把我需要的部分整理出来,后面再慢慢补充~
出处:USENIX2023
资源:https://github.com/CactiLab/code-xNIDS
一句话总结:在本文中,我们提出了 XNIDS,这是一种通过解释 DL-NIDS 来促进主动入侵响应的新颖框架。 我们的解释方法强调:(1)围绕历史输入进行近似和采样; (2)捕获结构化数据的特征依赖性以实现高保真解释。 基于解释结果,XNIDS可以进一步生成可操作的防御规则。
6 Evaluation
整体实验分为三个部分:
- 解释性能评估:fidelity, sparsity, completeness, and stability四个指标。
- 防御规则生成评估:practicability, accuracy, and efficiency三个指标。
- xNIDS辅助功能:从understand DL-NIDS behaviors, troubleshoot detection
errors, and facilitate active intrusion response 三个方面说明。
6.1 Evaluation of Explanation解释评估
6.2 Evaluation of Rule Generation防御规则评估
我们评估了 XNIDS 中规则生成机制在1支持的防御工具、2涵盖的攻击和3延迟方面的1实用性、2准确性和3效率。
数据集:Kitsune dataset and CIC-DoS2017 dataset