论文阅读笔记-XNIDS: Explaining Deep Learning-based Network Intrusion Detection Systems for Active Intrusio

在这里插入图片描述

前言

`上一篇写了可解释AI在安全领域的评估标准,并提到有多个工作引用了上一篇提出的各种标准。今天我们就来介绍来自USENIX2023的一篇安全领域可解释工作,xNIDS:解释DL-based NIDS以主动响应入侵
从题目中就可以看到,本文除了解释DL-based NIDS,还把重点放在了 基于解释结果,设计入侵响应规则 上。话不多说,还是先把我需要的部分整理出来,后面再慢慢补充~

出处:USENIX2023
资源:https://github.com/CactiLab/code-xNIDS
一句话总结:在本文中,我们提出了 XNIDS,这是一种通过解释 DL-NIDS 来促进主动入侵响应的新颖框架。 我们的解释方法强调:(1)围绕历史输入进行近似和采样; (2)捕获结构化数据的特征依赖性以实现高保真解释。 基于解释结果,XNIDS可以进一步生成可操作的防御规则。

6 Evaluation

整体实验分为三个部分:

  • 解释性能评估:fidelity, sparsity, completeness, and stability四个指标。
  • 防御规则生成评估:practicability, accuracy, and efficiency三个指标。
  • xNIDS辅助功能:从understand DL-NIDS behaviors, troubleshoot detection
    errors, and facilitate active intrusion response 三个方面说明。

6.1 Evaluation of Explanation解释评估

6.2 Evaluation of Rule Generation防御规则评估

我们评估了 XNIDS 中规则生成机制在1支持的防御工具、2涵盖的攻击和3延迟方面的1实用性、2准确性和3效率
数据集:Kitsune dataset and CIC-DoS2017 dataset

6.2.1 Supported Defense Tools 支持的防御工具

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值