- 博客(22)
- 收藏
- 关注
原创 PyTorch <2.6.0 有重大漏洞强制禁用导致推理界面无法运行
ValueError: Due to a serious vulnerability issue in torch.load, even with weights_only=True, we now require users to upgrade torch to at least v2.6 in order to use the function. This version restriction does not apply when loading files with safetensors.
2025-05-26 16:23:41
924
1
原创 向前传播(forward)和反向传播
例如,在一个深度神经网络中,反向传播会计算出每一层的权重和偏置对损失函数的梯度,这些梯度被传递给梯度下降算法,使它能够按照一定规则(如上述的更新规则)来调整这些参数,从而逐步降低损失函数的值。反向传播是梯度计算的工具,而梯度下降是利用这些梯度进行参数优化的算法,两者紧密相连,共同实现了神经网络的训练过程,使模型能够从训练数据中学习到有效的模式和规律,从而提高模型对新数据的预测能力。梯度下降算法是利用反向传播得到的梯度来优化模型参数的。优化权重参数(根据前向传播得到的损失值),更新模型,达到学习的效果,
2025-05-10 16:23:54
328
原创 像高中一样学习:卷积神经网络(Convolutional Neural Network,CNN)
卷积神经网络(Convolutional Neural Network,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络。它**主要用来处理具有网格结构的数据**,如图像(可以看作是像素值组成的二维网格)、音频(可以看作是一维的时间序列网格)等。它们的设计灵感来自于生物学中的视觉系统,旨在模拟人类视觉处理的方式。在过去的几年中,CNN已经在图像识别、目标检测、图像生成和许多其他领域取得了显著的进展,成为了计算机视觉和深度学习研究的重要组成部分
2025-05-09 15:43:15
551
原创 梯度消失和梯度爆炸
我们知道神经网络在进行反向传播(BP)的时候会对参数W进行更新,梯度消失就是靠后面网络层(如layer3)能够正常的得到一个合理的偏导数,但是靠近输入层的网络层,计算的到的偏导数近乎零,W几乎无法得到更新。### 什么是[梯度消失](https://so.csdn.net/so/search?梯度爆炸的意思是,靠近输入层的网络层,计算的到的偏导数极其大,更新后W变成一个很大的数(爆炸)。2. 另外,LSTM的结构设计也可以改善RNN中的梯度消失问题。### 梯度消失和梯度爆炸产生的原因。
2025-05-08 17:10:35
195
原创 像高中一样学习:激活函数
神经网络中的每个神经元节点接受**上一层神经元的输出值作为本神经元的输入值**,并将输入值传递给下一层,输入层神经元节点会将输入属性值直接传递给下一层(隐层或输出层)。在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数(又称激励函数)。
2025-05-08 17:07:26
962
原创 像高中一样学习:神经网络
**人工神经网络**(artificial neural network,缩写ANN),简称**神经网络**(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,**用于对函数进行估计或近似**。神经网络主要由:输入层,隐藏层,输出层构成**。当隐藏层只有一层时**,该网络为**两层神经网络**,由于输入层未做任何变换,可以不看做单独的一层。实际中,网络输入层的**每个神经元代表了一个特征**,**输出层个数代表
2025-05-07 17:22:01
545
原创 像高中一样学习:梯度下降法
梯度下降法在机器学习中常常用来优化损失函数,是一个非常重要的工具在**求解损失函数的最小值**时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为**随机梯度下降法**和**批量梯度下降法
2025-05-07 11:21:59
975
2
原创 #基础Machine Learning 算法(上)
机器学习算法大致可以分为三类:- **监督学习算法 (Supervised Algorithms)**:在监督学习训练过程中,可以由训练数据集学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。该算法要求特定的输入/输出,首先需要决定使用哪种数据作为范例。例如,文字识别应用中一个手写的字符,或一行手写文字。主要算法包括**神经网络、支持向量机、最近邻居法、朴素贝叶斯法、决策树**等。- **无监督学习算法 (Unsupervised Algorithms)**:这类算
2025-05-05 16:09:28
785
原创 像高中一样学习: 机器学习算法----线性回归(Linear Regression)
机器学习中的两个常见的问题:回归任务和分类任务。那什么是回归任务和分类任务呢?简单的来说,在**监督学习中(也就是有标签的数据中**),**标签值为连续值时是回归任务,标志值是离散值时是分类任务**。线性回归模型就是处理回归任务的最基础的模型。
2025-05-02 16:46:07
1023
原创 像高中一样学习:Swin Transformer
**Swin Transformer** 是一种基于 Transformer 的视觉模型,由 Microsoft 研究团队提出,旨在解决传统 Transformer 模型在计算机视觉任务中的高计算复杂度问题。
2025-05-02 15:55:05
949
原创 像高中一样学习:Transformer
Transformer是一种用于自然语言处理(NLP)和其他序列到序列(sequence-to-sequence)任务的深度学习模型架构,它在2017年由Vaswani等人首次提出。Transformer架构引入了自注意力机制(self-attention mechanism**),这是一个关键的创新,使其在处理序列数据时表现出色。
2025-04-30 18:29:54
597
原创 像高中一样学习:注意力机制(Attention Mechanism)
机器学习中的一种数据处理方法,允许机器学习模型在处理输入数据时,动态地选择性地关注与当前任务最相关的部分,同时忽略无关信息。其核心思想是通过计算输入元素的重要性权重,将有限的资源集中在关键信息上,从而提升模型的性能和解释性。
2025-04-29 23:42:25
761
原创 数据库完整性
简单介绍:首先先概述一下数据库完整性指的是什么,数据库完整性指的是数据的正确性和相容性。数据的正确性是指数据是符合现实世界语义、反映当前实际状况的;比如说人类的性别,只能是男和女。数据的相容性是指数据库同一对象在不同关系表中的数据是符合逻辑的。比如说年龄一般都在1-100岁,当然也有超过一百岁的,反正没有两百岁,三百岁成仙的人类。既然我们学的是数据库,那么数据库管理系统就应该为数据完整性实现如下的功能:1.提供定义完整性约束条件的机制。
2024-05-19 14:48:58
698
原创 数据库安全
把对表SC的INSERT权限授予U5用户,并允许他再将此权限授予其他用户。把对Student表和Course表的全部权限授予用户U2和U3。GRANT <权限>[,<权限>]...REVOKE <权限>[,<权限>]...把查询Student表和修改学生学号的权限授给用户U4。语义:将对指定操作对象的指定操作权限授予指定的用户。FROM <用户>[,<用户>]...;[ON <对象类型> <对象名>]TO <用户>[,<用户>]...[ON <对象类型> <对象名>]PUBLIC(全体用户)
2024-05-19 14:48:13
351
原创 SQL数据库
SQL(Structured Query Language)结构化查询语言,是关系数据库的标准语言数据定义概览SQL的数据定义功能:模式定义表定义视图和索引的定义模式的定义为用户BitHachi定义了一个模式S-T如果没有指定<模式名>,那么<模式名>隐含为<用户名>COL2 INT,为用户BitHachi创建了一个模式S-T,并在其中定义了一个表TAB1模式的删除DROP SCHEMA <模式名> <CASCADE|RESTRICT>CASCADE(级联)
2024-05-19 14:47:34
1106
原创 关系数据库
用户定义完整性(User-Defined Integrity)是数据库设计中的一种完整性约束,它是由用户或应用程序自定义的规则,用于确保数据的正确性和一致性。用户定义完整性包括以下几种主要类型:域完整性(Domain Integrity)定义属性的取值范围、格式等规则,如年龄必须在0-120之间、电话号码必须是11位数字等。这些规则通过数据类型、CHECK约束等实现。实体完整性(Entity Integrity)确保每个实体(行)都有一个唯一标识,通常通过主键约束实现。
2024-05-19 14:46:46
801
原创 Triz 方法: How-to 模型与知识效应库 及其运用实例
对光线的智能控制,选择最合适的光线种类和强度固体发光:---->LED灯泡LED 发光二极管(Light Emitting Diode,LED)发出特定波长的光是通过固体半导体材料的电子能级结构决定的。以下是 LED 灯泡发出470、495 和 525 纳米波长的蓝绿光的原理:发光机制:LED 的发光机制主要是通过固体半导体材料的电子复合释放能量所产生的。当正向电压施加到 LED 端口时,电子会从材料的较低能级带跃迁到较高能级带,这是导致电子与空穴(正空间的电子)复合并释放能量的过程,也就是光子的发射。
2024-03-23 17:46:38
4258
1
原创 关于利用CPC和光照结合的物联网系统与睡眠周期-改善睡眠质量以及睡眠惰性的理论support
睡眠结构:从心率信号中提取正常窦性心律间期序列以及呼吸信号,通过希尔伯特-黄(HHT)变换技术,分析这两种信号的相干度与互谱功率,生成睡眠期间心肺耦合动力学频谱(Cardio Pulmonary Coupling,CPC),可准确分析出睡眠的各个阶段,包括深睡浅睡、快速眼动和清醒。另外,常规PSG是一个睡眠监测过程,通常局限于一整晚睡眠,而CPC作为一个同样客观的睡眠质量评估工具,可用于长期筛查监测,提供更多评估诊断依据,为睡眠质量提供全新的评估视角。,并且当夜晚来临后使褪黑素的分泌更加提前。
2024-03-20 19:25:52
1812
2
原创 计算机网络知识点总结
ip网络的时延通常是指一个报文或分组从一个网络的一端传送到另一个端所需要的时间。发送时延,传播时延,处理时延,排队时延总时延=发送时延+传播时延+处理时延+排队时延。一般来说,处理时延和排队时延主要取决于CPU快慢,系统负荷和应用软件设计的设计与实现。而发送时延与传播时延则是由IP网络的带宽的网络传输距离所决定的。所以我们谈到IP网络时延时主要是指发送时延与传播时延。1.1、发送时延(传输时延)网络地址转换主要应用在企业网络的边缘设备上。
2023-12-06 23:51:01
2086
2
原创 SQL注入全总结
所谓POST注入就是我们在前端提交数据的时候,前端使用的是POST方式提交的数据。说白了,跟GET注入没有什么本质上的区别,无非就是提交数据的方式改变了,而注入的技巧思路都是一样的。
2023-11-02 11:51:06
669
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人