PTA 7-27 用扑克牌计算24点 (25分)

一副扑克牌的每张牌表示一个数(J、Q、K 分别表示 11、12、13,两个司令都表示 6)。任取4 张牌,即得到 4 个 1~13 的数,请添加运算符(规定为加+ 减- 乘* 除/ 四种)使之成为一个运算式。每个数只能参与一次运算,4 个数顺序可以任意组合,4 个运算符任意取 3 个且可以重复取。运算遵从一定优先级别,可加括号控制,最终使运算结果为 24。请输出一种解决方案的表达式,用括号表示运算优先。如果没有一种解决方案,则输出 -1 表示无解。

输入格式:

输入在一行中给出 4 个整数,每个整数取值在 [1, 13]。

输出格式:

输出任一种解决方案的表达式,用括号表示运算优先。如果没有解决方案,请输出 -1。

输入样例:

2 3 12 12

输出样例:

((3-2)*12)+12

思路:

3个运算符,4个数字,2对括号,有5种组合方式。注意用浮点数运算

((a op b) op c) op d

(a op (b op c)) op d

a op ((b op c) op d)

a op (b op (c op d))

(a op b) op (c op d)

代码:

#include <bits/stdc++.h>
using namespace std;
char op[4]= {'+','-','*','/'};//储存运算符
int flag=0;//做标记有无解
float result(float x,float y,char op) {
    float sum=0;
    switch(op)
	{
		case '+':
			sum=x+y;
		break;
		case '-':
			sum=x-y;
		break;
		case '*':
			sum=x*y;
		break;
		case '/':
			sum=x/y;
		break;
	}
	return sum;
}
float model1(float a,float b,float c,float d,char op1,char op2,char op3) {
    float x,y,z;
    x=result(a,b,op1);
    y=result(x,c,op2);
    z=result(y,d,op3);
    return z;
}
float model2(float a,float b,float c,float d,char op1,char op2,char op3) {
    float x,y,z;
    x=result(b,c,op2);
    y=result(a,x,op1);
    z=result(y,d,op3);
    return z;
}
float model3(float a,float b,float c,float d,char op1,char op2,char op3) {
    float x,y,z;
    x=result(c,d,op3);
    y=result(b,x,op2);
    z=result(a,y,op1);
    return z;
}
float model4(float a,float b,float c,float d,char op1,char op2,char op3) {
    float x,y,z;
    x=result(b,c,op2);
    y=result(x,d,op3);
    z=result(a,y,op1);
    return z;
}
float model5(float a,float b,float c,float d,char op1,char op2,char op3) {
    float x,y,z;
    x=result(a,b,op1);
    y=result(c,d,op3);
    z=result(x,y,op2);
    return z;
}
int cal(int a,int b,int c,int d) {
    int i,j,k;//运算符的遍历
    for(i=0; i<4; i++) {
        for(j=0; j<4; j++) {
            for(k=0; k<4; k++) {
                char op1=op[i],op2=op[j],op3=op[k];
                if(model1(a,b,c,d,op1,op2,op3)==24) {
                    printf("((%d%c%d)%c%d)%c%d",a,op1,b,op2,c,op3,d);
                    flag=1;
                    return 0;
                }
                if(model2(a,b,c,d,op1,op2,op3)==24) {
                    printf("(%d%c(%d%c%d))%c%d",a,op1,b,op2,c,op3,d);
                    flag=1;
                    return 0;
                }
                if(model3(a,b,c,d,op1,op2,op3)==24) {
                    printf("%d%c(%d%c(%d%c%d))",a,op1,b,op2,c,op3,d);
                    flag=1;
                    return 0;
                }
                if(model4(a,b,c,d,op1,op2,op3)==24) {
                    printf("%d%c((%d%c%d)%c%d)",a,op1,b,op2,c,op3,d);
                    flag=1;
                    return 0;
                }
                if(model5(a,b,c,d,op1,op2,op3)==24) {
                    printf("(%d%c%d)%c(%d%c%d)",a,op1,b,op2,c,op3,d);
                    flag=1;
                    return 0;
                }
            }
        }
    }
}
int main() {
    int x[4];//储存输入的数字
    cin>>x[0]>>x[1]>>x[2]>>x[3];
    int i,j,k,t;//数的遍历
    for(i=0; i<4; i++) {
        for(j=0; j<4; j++) {
            if(j==i)continue;
            for(k=0; k<4; k++) {
                if(k==i||k==j)continue;
                for(t=0; t<4; t++) {
                    if(t==i||t==j||t==k)continue;
                    cal(x[i],x[j],x[k],x[t]);
                    if(flag)
                        return 0;
                }
            }
        }
    }
    if(!flag)
        cout<<-1;
    return 0;
}
详见 跃鱼:https://www.cnblogs.com/snzhong/p/12585080.html
### 解决方案概述 股票交易收益计算问题是经典的动态规划问题之一。其核心在于找到买入和卖出的最佳时机以最大化利润。下面提供了一种基于动态规划的方法来实现这一目标。 #### 动态规划的核心思路 假设我们有一个数组 `prices` 表示每天的股票价格,我们需要找出最佳的一次买卖时间使得收益最大。如果无法获得正收益,则返回零表示不进行任何操作是最优解[^3]。 定义两个变量: - **min_price**: 遍历过程中遇到的历史最低价。 - **max_profit**: 当前为止可以获得的最大利润。 遍历整个价格列表,在每一天更新这两个变量即可得出最终答案。 以下是具体算法实现: ```python def maxProfit(prices): if not prices or len(prices) < 2: return 0 min_price = float('inf') # 初始化为无穷大 max_profit = 0 # 初始利润为0 for price in prices: # 更新历史最低购买价格 min_price = min(min_price, price) # 计算当前价格出售能获得的利润并更新最大利润 profit = price - min_price max_profit = max(max_profit, profit) return max_profit ``` 此函数接受一个名为 `prices` 的列表作为参数,并返回可能达到的最大利润值。如果没有盈利机会则返回 0。 --- ### 结合随机策略的概率模型扩展思考 对于更复杂的场景比如允许多次买卖或者存在手续费等问题时,可以引入强化学习中的概念如上述提到的随机性策略π(a|s)[^1] 来模拟不同市场条件下多种动作(买/卖/持有)的可能性及其对应回报率评估最优决策路径。不过这超出了单纯求解一次最佳买卖区间范围之外。 --- ### 复杂度析 该方法仅需单次扫描整个数据集就能完成任务,因此时间复杂度为 O(n),其中 n 是天数或股价记录条目数量;空间复杂度为 O(1),因为只用了固定几个额外存储单元保存中间状态信息而不依赖于输入规模大小变化而改变所需内存资源量级[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值