多种方法求逆元的板子

三种方法放在洛谷上都过了(除了费马小定理求快速幂最后一个点TLE了),所以正确性是没问题的
才知道!!x1这个变量名!!是不能在LINUX下用的!!!

#include<cstdio>
#include<cstring>
using namespace std;
#define ll long long
const int N=3e6+5;
//o(n)求逆元,要求模数必须为质数,并且所求的数小于模数 
ll inv[N];
void getinv(int n,int p)
{
    inv[1]=1;
    for(int i=2;i<=n;i++) 
    inv[i]=(p-p/i)*inv[p%i]%p;
}
//o(logn) 用扩展欧几里德求逆元 
void exgcd(int a,int b,ll &x,ll &y,ll &d)
{
    if(!b) {
        x=1,y=0,d=a;
        return;
    }
    ll xx,yy;
    exgcd(b,a%b,xx,yy,d);
    x=yy,y=xx-(a/b)*yy;
} 
//a在模m意义下的逆元 要求a,m互质 O(logn)
ll inverse(int a,int m)
{
    ll x,y,d;
    exgcd(a,m,x,y,d);//ax+py=1
    if(d!=1) return -1;
    return (x%m+m)%m;
}
//费马小定理求逆元 要求模数为质数 逆元=a^(p-2)
//这个常数明显要大,放到洛谷上要TLE最后一个点 
ll Fermat(int a,int p)
{
    ll base=a,ans=1;
    for(int i=p-2;i;i>>=1,base=(base*base)%p)
    if(i&1) ans=ans*base%p;
    return ans; 
}
//欧拉函数求逆元 类比费马小定理 x^(phi[m]-1)为x的逆元【所以还要求欧拉函数】 
int main()
{
    int n,p;
    scanf("%d%d",&n,&p);
/*  for(int i=1;i<=n;i++)
    printf("%lld\n",Fermat(i,p));*/
/*  for(int i=1;i<=n;i++)
    printf("%lld\n",inverse(i,p));*/
/*  getinv(n,p);
    for(int i=1;i<=n;i++) printf("%lld\n",inv[i]);*/
    return 0;
} 

时间复杂度比较
O(n)求
这里写图片描述
O(nlogn) exgcd求
这里写图片描述
O(nlogn) 费马小定理求
这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值