Introduction to PyTorch系列官方教程中文版-4 # Build The Neural Network

# Build The Neural Network

  神经网络由对数据执行操作的层/模块组成。torch.nn提供了构建神经网络所需的所有模块。Pytorch中的每个模块都是nn.Module的子类。一个神经网络是一个包含了其他模块(层)的模块。这种嵌套的结构使得更容易建立和管理这种复杂的结构。
  示例:建立一个神经网络去识别FashionMNIST数据集中的图像

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

1 Get Device for Training

  使用GPU可以加速模型训练。接下来我们验证GPU是否可用(torch.cuda.is_available)

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))

2 Define the Class

  通过子类化nn.Module定义我们自己的神经网络。
(1) 在__init__方法中初始化神经网络层
(2) 每一个nn.Module子类在forward方法中实现对输入数据的操作

class NeuralNetwork(nn.Module):
	def __init__(self):		# 定义网络结构
		super(NeuralNetwork, self).__init__()
		self.flatten = nn.Flatten()
		self.linear_relu_stack = nn.Sequential(
			nn.Linear(28 * 28, 512),
			nn.ReLU(),
			nn.Linear(512, 512),
			nn.ReLU(),
			nn.Linear(512, 10),
			nn.ReLU()
		)
	def forward(self, x):	# 前向传播
		x = self.flatten(x)
		logits = self.linear_relu_stack(x)
		return logits

  在使用模型前需要先实例化模型,并将其移动到CPU上

model = NeuralNetwork().to(device)
print(model)
"""
Output:
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
    (5): ReLU()
  )
)
"""

  为了使用模型,我们将输入数据传递给他。这将执行模型的forward以及一些后台操作。
  在输入数据上调用模型,会返回一个10维张量,其中包含每个类的原始预测值。我们将其传递给nn.Softmax模块的实例来获得预测概率。

X = torch.rand(1, 28, 28, device=device)	# 生成(1, 28, 28)的数据
logits = model(X)							# 向模型输入数据
pred_proab = nn.Softmax(dim=1)(logits)		# 调用Softmax将预测映射为(0, 1)之间的概率
y_pred = pred_probab.argmax(1)				# 求最大概率对应的类别
print(f"Predicted class: {y_pred}")
"""
Output:
	Predicted class: tensor([0])
"""

3 Model Layers

  让我们来分解网络,以讲解每一层的功能。为了说明这一点,我们将取一个由3张大小为28×28的图像组成的小批量样本输入网络。

input_image = torch.rand(3, 28, 28)		# 生成(3, 28, 28)的数据
print(input_image.size())

3.1 nn.Flatten层

  Flatten层用于将多维的输入一维化,常用在从卷积层到全连接层的过度。我们初始化nn.Flatten层以将每个2D图像转换为784(28*28)个像素值的连续数组(批量维度保持为3)

flatten = nn.Flatten()
flat_image = flatten(input_image)	# (3, 28, 28)转换为(3, 784)
print(flat_image.size())

3.2 nn.Linear层

  Linear层用该层的权重和偏置对输入数据做线性变换。

layer1 = nn.Linear(in_feature=28 * 28, out_features=20)	# 输入(3, 28*28),输出(3, 20)
hidden1 = layer1(flat_image)
print(hidden1.size())

3.3 nn.ReLU层

  为了在模型输入和输出之间建立一个复杂的非线性映射,需要使用非线性的激活函数。该函数在线性变换后引入非线性,帮助神经网络学习各种各样的复杂映射。
  在这个模型中,我们在线性层之间使用nn.ReLU,也可以使用其他激活函数来引入非线性。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

3.4 nn.Sequential层

  nn.Sequential是一个有序的模型容器。输入数据将以Sequential中定义的顺序流经各层。可以使用nn.Sequential来组合一个快速网络,例如下面的seq_modules.

seq_modules = nn.Sequential(
	flatten,
	layer1,
	nn.ReLU(),
	nn.Linear(20, 10)
)
input_image = torch.rand(3, 28, 28)
logits = seq_modules(input_image)

3.5 nn.Softmax层

  神经网络的最后一个线性层返回logits,即值域区间在[-infty, infty]中的原始值。这些值之后传递给nn.Softmax模块后,logits被缩放到[0, 1]区间,表示模型对每个类的预测概率(dim参数指示数值总和必须为1的维度)

softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)
print(pred_probab)

4 Model Parameters

  神经网络内的许多层都是参数化的,即具有相关联的权重和偏置,这些参数在训练中被迭代优化。子类nn.Module自动跟踪模型对象内部定义的所有字段,并使用模型的Parameters()或named_parameters()方法访问所有参数。我们可以通过模型迭代每个参数,并输出其尺寸和值。

print("Model structure: ", model, "\n\n")
for name, param in model.named_parameters():
	print(f"Layer: {name} | Size: {param.size()} | Value: {param[:2]} \n")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值