最大子向量(编程珠玑阅读笔记)

        昨天阅读了《编程珠玑》的算法设计技术这一章,感受颇丰,下面是我对最大子向量做的笔记,但涉及到书本的版权问题,所以就不放书本上的代码了。
 
        当我第一眼看到这个问题的时候,我最先想到也是唯一能想到的算法是像下面这样的,向量的初始化就不给出了。
for(int i=0;i<n;i++){  
  for(int j=i;j<n;j++){  
       sum+=array[j];
       maxsofar=max(maxsofar,sum);//max()方法用于比较两个参数的大小,具体实现就不给出了。  
   }  
}


        此算法的时间复杂度是O(n²)。

        之后我看到了另一种算法,运用了分治的原理。要解决规模为n的问题,可以递归的解决规模为n/2的子问题,最后把子问题的答案和并得到最终的答案(感觉这有点像动态规划啊)。所以按这种思想,把原向量分成两个大小近似的子向量a,b,然后递归的找出a和b中的最大子向量ma和mb,但是原向量的最大子向量可能并不在a或b 中,它(mc)可能跨越了a和b,mc在a中的部分是a中右边的最大子向量,同理,在b中的部分是b中左边的最大子向量,所以把这两个子向量相加就得到了mc,最后比较ma,mb,mc的大小来得到原向量的最大子向量。时间复杂度为O(nlogn)。

        看完运用分治原理的算法之后我以为这是最佳的算法了,当我看到后面的扫描算法的时候,我的想法又一次被改变,说实话,我逐字逐句看了三四遍,才勉强看懂(唉,不得不说世界上的人才真多)。

         扫描算法的思想是,从数组左边开始扫描,一直到末尾,记下遇到的最大子向量。利用类似于分治的原理,把具有n个元素的向量array分成array[0..n-2]和array[n-1]两部分,所以根据前面利用分治原理,最大子向量要么在array[0..n--2]中,还要么最大子向量的结束位置为array[n-1],此算法的时间复杂度是O(n)。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值