LXYTSOS的专栏

The Quieter You Become, The More You Are Able To Hear.

目标检测第一弹——RCNN,SPP

R-CNN 使用大容量卷积神经网络(CNN)自下而上生成候选区域(region proposals),以便定位和分割对象。 标记训练数据稀缺,使用监督式预训练,基于特定领域的微调模型进行辅助,性能显著提升。 R-CNN系统综述 输入一张图像 自下而上提取出大约2000个候选区域,对每个候选...

2019-06-16 20:51:48

阅读数 21

评论数 0

大家的人工智能——正规方程

在《大家的人工智能——线性回归》中,我们介绍了如何找到一条直线来拟合训练数据,下面把之前的一元线性回归扩展到多元线性回归: y=θ0+θ1x1+θ2x2+⋅⋅⋅+θnxn y = \theta_0 + \theta_1x_1 + \theta_2x_2 + ··· + \theta_nx_n y=...

2019-06-09 10:48:49

阅读数 1370

评论数 0

大家的人工智能——线性回归

在《大家的人工智能——学习路线总览》中,相信大家已经对人工智能领域已经有了一个初步的了解,现在我们从其中一个小方面入门机器学习,今天我们将要讲述的是机器学习中的一种线性模型——线性回归。 什么是线性回归 让我们把思绪先倒回到初中数学课堂上(如果你已经上过初中),来回顾一个知识点:一元一次方程,给出...

2019-06-05 13:44:50

阅读数 55

评论数 0

PyTorch风格迁移,人人都是名画大师

爱好绘画的小伙伴们有没有想过将各种名画的风格融入自己的绘画作品当中?如今借助深度学习技术,很容易就能将名画的风格迁移到任何一张画中。 Neural Transfer 网络接收三张图片作为输入,一张内容图像,一张风格图像,一张由内容图像初始化的图像(最终将风格迁移到这张图像上来)。 损失函数 这里将...

2019-06-02 21:53:07

阅读数 39

评论数 0

torchvision 0.3图像分割目标检测初体验

前几天听说torchvision 0.3发布了,它支持分割模型、检测模型。而由于工作原因,刚好在寻找一种比容易使用的图像分割工具,不需要复杂的图像处理步骤、配置、训练代码,所以自然而然试试torchvision 0.3的功能了。 下面记录一下小编我使用torchvision 0.3训练图像分割目标...

2019-05-30 18:34:57

阅读数 65

评论数 5

Kaggle座头鲸识别top5解决方案

比赛背景 为帮助鲸鱼保护工作,科学家们使用照片监测系统来监测海洋活动。使用鲸鱼尾巴的形状和在录像中发现的独特标记来识别正在分析的鲸鱼的种类。在过去的40年中,大部分工作都是由个别科学家手工完成的,留下了大量的数据未开发未使用。因此Kaggle举办了这场比赛,提供了25000多张训练图片以及将近80...

2019-05-29 19:53:21

阅读数 21

评论数 0

大家的人工智能——学习路线总览

最近有读者向小编反馈,之前写的文章对初学者来说太难看懂了,确实如此,那些比较适合对人工智能有初步了解的人看,但是对于初学者而言,看起来难免会觉得云里雾里了。为此,小编专门咨询了几位打算入门的初学者,总结之后有这么几点: 总览人工智能 基础性概念 逐步深入 应用场景 如何使用 应“广大”读者需求...

2019-05-28 21:45:19

阅读数 33

评论数 0

PyTorch模型保存与加载

torch.save:保存序列化的对象到磁盘,使用了Python的pickle进行序列化,模型、张量、所有对象的字典。 torch.load:使用了pickle的unpacking将pickled的对象反序列化到内存中。 torch.nn.Module.load_state_dict:使用反序列化...

2019-05-28 14:58:10

阅读数 36

评论数 0

Pytorch迁移学习

在实际应用中,很少有人从头开始训练整个卷积网络,因为很难获得足够多的数据。因此,常用的做法是使用在庞大数据集上训练好的模型作为预训练模型,用来初始化网络,或者提取特征。 迁移学习的主要应用场景有以下两种: 微调模型。使用预训练模型初始化网络 特征提取。除最后一层全连接层之外,固定网络中其他层的权...

2019-05-25 11:16:01

阅读数 30

评论数 0

PyTorch深度学习60分钟快速上手(四),训练分类器。

训练分类器 现在我们已经知道如何定义网络结构,计算损失以及更新网络权重了,那么, 如何准备数据? 一般来说,处理图像、文本、语音或视频数据,我们可以直接使用Python的标准包将数据加载成numpy数组,然后将它转成torch.*Tensor。 对于图片数据,可以使用Pillow,OpenCV;...

2019-05-23 21:44:41

阅读数 23

评论数 0

PyTorch深度学习60分钟快速上手(三),神经网络。

神经网络 使用torch.nn可以很方便地构建神经网络。 到目前为止,我们已经对autograd有所了解,nn依靠autograd来定义模型,并求微分。nn.Module包含了许多网络层,forward(input)能返回输出结果output。 下面是分类数字图片的网络结构图: 这是一...

2019-05-21 21:12:08

阅读数 386

评论数 0

PyTorch深度学习60分钟快速上手(二),自动微分。

自动微分 Pytorch中所有神经网络的核心是autograd包,我们先简单的来了解下这个包,然后来训练第一个神经网络。 autograd包为tensor上所有操作提供了自动微分功能。Pytorch是一个先运行后定义(define-by-run)的网络框架,是一种动态网络图结构,因此代码如何运行决...

2019-05-20 13:49:09

阅读数 27

评论数 0

PyTorch深度学习60分钟快速上手(一),什么是PyTorch?

人工智能深度学习、机器学习 公众号:机器工匠 学习目标: 理解Pytorch 的 Tensor库,以及神经网络。 训练一个简单的图像分类网络。 假设已经了解numpy的基本用法,并确保已经安装好torch和torchvision。 什么是Pytorch Pytorch是一个基于Pyth...

2019-05-18 23:08:19

阅读数 63

评论数 0

编译pycaffe SSD(python3.6,OpenCV3.4)

编译caffe(python3.6,OpenCV3.4) 安装依赖包 编译caffe首先要安装一大堆的依赖包: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-...

2018-07-13 15:44:14

阅读数 1179

评论数 0

遇见AI,从Java到数据挖掘。

在上小学的时候就听说过AI,人工智能,那个时候我对人工智能的感受都来自于各类影视作品,类人的外表,能听说读写,有情感,会思考。所以那个时候的我将人工智能想象成和人类相似的一样东西,对人工智能的理解也仅此而已,总是好奇人工智能是如何发明出来的,没有一点头绪,甚至在那个时候,我都不知道遥控器为什么能够...

2017-07-21 22:31:43

阅读数 6998

评论数 16

Mac OS X与Windows下TensorFlow的安装与升级

前几天得知TensorFlow 1.0版本发布了,又一个偶然的机会,知道了国内第一本关于TensorFlow的中文书籍——《TensorFlow实战》,所以买来打算跟着书本学习,这篇文章是为了记录我安装TensorFlow时遇到的问题。 书中使用的TensorFlow版本是1.0.0,默认使用P...

2017-03-03 20:10:03

阅读数 4195

评论数 2

从几何角度切入最近邻

我们可以将预测任务看成是将一些输入映射成输出的过程。将输入分解成一系列特征集合,来形成对学习有用的抽象,因此,输入就是一系列特征值。我们从几何学的角度来看待这些数据,每一个特征是空间中的一个维度,因此每个数据点可以映射成高维空间中的点。把数据集看作是高维空间中的点之后,我们可以在这些点上进行几何运...

2016-09-16 13:43:19

阅读数 4483

评论数 0

在Kaggle手写数字数据集上使用Spark MLlib的RandomForest进行手写数字识别

昨天我使用Spark MLlib的朴素贝叶斯进行手写数字识别,准确率在0.83左右,今天使用了RandomForest来训练模型,并进行了参数调优。首先来说说RandomForest 训练分类器时使用到的一些参数: numTrees:随机森林中树的数目。增大这个数值可以减小预测的方差,提高预测试验...

2016-05-12 20:36:43

阅读数 13504

评论数 0

在Kaggle手写数字数据集上使用Spark MLlib的朴素贝叶斯模型进行手写数字识别

昨天我在Kaggle上下载了一份用于手写数字识别的数据集,想通过最近学习到的一些方法来训练一个模型进行手写数字识别。这些数据集是从28×28像素大小的手写数字灰度图像中得来,其中训练数据第一个元素是具体的手写数字,剩下的784个元素是手写数字灰度图像每个像素的灰度值,范围为[0,255],测试数据...

2016-05-11 22:40:40

阅读数 9772

评论数 0

多层网络和反向传播笔记

在我之前的博客中讲到了感知器(感知器),它是用于线性可分模式分类的最简单的神经网络模型,单个感知器只能表示线性的决策面,而反向传播算法所学习的多层网络能够表示种类繁多的非线性曲面。对于多层网络,如果使用线性单元的话,多个线性单元的连接仍然是线性函数,所以还不能表征非线性函数。使用感知器单元,但是它...

2016-04-17 21:25:28

阅读数 9869

评论数 1

提示
确定要删除当前文章?
取消 删除