文章目录
无监督学习入门:聚类算法从原理到实战全教程
你是否好奇如何让机器自动给数据“分组归类”?是否想了解那些看似杂乱的数据背后隐藏的结构?聚类算法就是无监督学习中让机器“洞察数据规律”的利器。这篇教程将带你走进聚类的世界,从K-means到DBSCAN,一步步掌握让数据“自动分类”的技能。
一、聚类:让数据自己“找组织”
什么是聚类? 它是无监督学习的核心任务之一,目标是将相似的数据点归为一类,不同类的数据点尽量区分开。比如把客户按消费习惯分成“高活跃”“潜在流失”等群体,或把新闻按主题分成“科技”“财经”等类别。
与有监督学习不同,聚类不需要标签数据,完全靠数据自身的特征来“找规律”。这让它在探索性数据分析、异常检测等场景中尤为实用。
二、经典聚类算法:K-means原理与实战
K-means是最经典的聚类算法之一,核心思想是“最小化簇内距离,最大化簇间距离”。
1. K-means工作原理
K-means的流程就像“选班长→分组→换班长→再分组”的循环:
- 步骤1:选初始簇中心:随机选
订阅专栏 解锁全文
2163

被折叠的 条评论
为什么被折叠?



