「扩展欧几里得」学习笔记

d a t e : 2023.1.15 \tt date:2023.1.15 date:2023.1.15

如果觉得写得好就给个赞吧
博客没有赞,作者两行泪


为了介绍扩展欧几里德,我们先介绍一下贝祖定理

即如果 a , b a,b a,b 是整数,那么一定存在整数 x , y x,y x,y 使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

可以得到:如果 a x + b y = c ax+by=c ax+by=c 有解,那么 g c d ( a , b )   ∣   c gcd(a,b)~|~c gcd(a,b)  c

可以采用构造性的数学归纳法证明。

  • b = 0 b=0 b=0 时, g c d ( a ,   b ) = a gcd(a,~b)=a gcd(a, b)=a。此时 x = 1 , y = 0 x=1,y=0 x=1,y=0
  • b b b 不为 0 0 0 时,根据欧几里得定理可得,即 a x + b y = b x ′ + ( a   m o d   b ) y ′ = b x ′ + ( a − b × ⌊ a b ⌋ ) y ′ ax+by=bx'+(a~mod~b)y'=bx'+(a-b \times\lfloor\frac{a}{b}\rfloor)y' ax+by=bx+(a mod b)y=bx+(ab×ba⌋)y
  • 移项得 a x + b y = b x ′ + ( a   m o d   b ) y ′ = a y ′ + b ( x ′ − ⌊ a b ⌋ ) y ′ ax+by=bx'+(a~mod~b)y'=ay'+b(x'-\lfloor\frac{a}{b}\rfloor)y' ax+by=bx+(a mod b)y=ay+b(xba⌋)y
  • 于是就有:
    { x = y ′ y = x ′ − ⌊ a b ⌋ y ′ \begin{cases} x=y'\\ y=x'-\lfloor\frac{a}{b}\rfloor y' \end{cases} {x=yy=xbay

我们可以在递归的最内层(即 b = 0 b=0 b=0 时)给 x , y x,y x,y 赋值,也就是 x = 1 ,   y = 0 x=1,~y=0 x=1, y=0,这样就可以把每一层的 x , y x,y x,y 都推算出来。

于是就有了代码:

void exgcd(int a, int b, int &x, int &y) {
    if(b==0) {
        x=1; y=0; // 赋值
        return;
    }
    exgcd(b, a%b, x, y); // 先递归到最里层
    int tmp=x;
    x=y;
    y=tmp-(a/b)*y;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值