如果两个坐标合法,则一定满足下面三种情况中的一种:
- 横坐标相同:即满足 x [ i ] = x [ j ] x[i] = x[j] x[i]=x[j]。
- 纵坐标相同:即满足 y [ i ] = y [ j ] y[i] = y[j] y[i]=y[j]。
- 在同一个对角线上 :
即满足 x [ i ] + y [ i ] = x [ j ] + y [ j ] x[i]+y[i]=x[j]+y[j] x[i]+y[i]=x[j]+y[j](可以认为是“\”)或者 x [ i ] − y [ i ] = x [ j ] − x [ j ] x[i]-y[i]=x[j]-x[j] x[i]−y[i]=x[j]−x[j](可以认为是“/”)。
那我们就对这几种情况分别开几个 map 来记录这每种情况的次数,最后累加起来就行,注意要开 long long
。
代码如下:
#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
#define int long long
#define maxn 200005
int x[maxn], y[maxn];
map <int, int> d1, d2, d3, d4;
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t, n, ans;
cin >> t;
while (t--) {
cin >> n;
ans = 0;
d1.clear(); d2.clear();
d3.clear(); d4.clear();
for (int i = 1; i <= n; i++) {
cin >> x[i] >> y[i];
d1[x[i]]++;
d2[y[i]]++;
d3[x[i] + y[i]]++;
d4[x[i] - y[i]]++;
}
for (int i = 1; i <= n; i++) {
ans = ans + d1[x[i]] - 1;
ans = ans + d2[y[i]] - 1;
ans = ans + d3[x[i] + y[i]] - 1;
ans = ans + d4[x[i] - y[i]] - 1;
}
cout << ans << '\n';
}
}