CF1850G The Morning Star ---- 题解

3 篇文章 0 订阅
2 篇文章 0 订阅

如果两个坐标合法,则一定满足下面三种情况中的一种:

  1. 横坐标相同:即满足 x [ i ] = x [ j ] x[i] = x[j] x[i]=x[j]
  2. 纵坐标相同:即满足 y [ i ] = y [ j ] y[i] = y[j] y[i]=y[j]
  3. 在同一个对角线上 :
    即满足 x [ i ] + y [ i ] = x [ j ] + y [ j ] x[i]+y[i]=x[j]+y[j] x[i]+y[i]=x[j]+y[j](可以认为是“\”)或者 x [ i ] − y [ i ] = x [ j ] − x [ j ] x[i]-y[i]=x[j]-x[j] x[i]y[i]=x[j]x[j](可以认为是“/”)。

那我们就对这几种情况分别开几个 map 来记录这每种情况的次数,最后累加起来就行,注意要开 long long

代码如下:

#include <iostream>
#include <cstdio>
#include <map>

using namespace std;

#define int long long
#define maxn 200005

int x[maxn], y[maxn];

map <int, int> d1, d2, d3, d4;

signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t, n, ans;
    cin >> t;
    while (t--) {
        cin >> n;
        ans = 0;
        d1.clear(); d2.clear();
        d3.clear(); d4.clear();
        for (int i = 1; i <= n; i++) {
            cin >> x[i] >> y[i];
            d1[x[i]]++;
            d2[y[i]]++;
            d3[x[i] + y[i]]++;
            d4[x[i] - y[i]]++;
        }
        for (int i = 1; i <= n; i++) {
            ans = ans + d1[x[i]] - 1;
            ans = ans + d2[y[i]] - 1;
            ans = ans + d3[x[i] + y[i]] - 1;
            ans = ans + d4[x[i] - y[i]] - 1;
        }
        cout << ans << '\n';
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值