计算熵引发的一些讨论

计算熵引发的一些讨论

如下公式为: f(p1,,pn)=ni=0pilogpi ,其中 ni=0pi=1pi<pi+1
这个式子在 p1=p2=...=pn 处取得最小值.
其中证明的方式是,构造一个序列, (p11,,p1n) (pk1,,pkn) .
构造方法是通过局部调整 pi,pi+1 的大小。 e=ni=0pin ,则
(p21,,p2n)=(e,p11+p12e,,p1n)
(p31,,p3n)=(e,e,p22+p23e,,p2n)
(pn11,,pn1n)=(e,e,,e)
而可以很轻易的证明 f(pi1,,pin)>f(pi+11,,pi+1n) (原问题从而转化成该问题)
从而证明到对于任意的 p1,,pn,f(p1,,pn)>f(e,,e)
但是这种证明方式基于一种幸运之上。因为正好存在这种构造序列的方法,并且这种构造能够轻易证明。
如果我现在假定,构造序列只允许如下操作,对序列中两个数做一次平均操作,即对任意的 pi,pj 可以构造成 pi+pj2,pi+pj2 ,即 (pk1,,pki,,pkj,,pkn) 只能转化成 (pk+11,,pk+1j+pk+1j2,,pk+1j+pk+1j2,,pk+1n)
怎么通过有规律的执行该操作来构造序列,经过无限次操作后,序列能够达到(e,e,…,e)的极限,且 f(pi1,,pin)>f(pi+11,,pi+1n)
下面构造一种方法,符合上面的条件。
反复执行如下操作(记为A):

1. p1,p2
2. p2,p3

n-1. pn1,pn

最终会达到极限(e,e…e).注意到A操作事实上是一个线性变换,所以A是一个矩阵。所以 An

1n1n1n1n

这个收敛的证明方式,尚且不知。

事实上,上述证明方法是一种很一般的方法的特殊应用。
记M是一个向量空间。v是M空间中的一个元素,g将v映射到一个数域空间,g(v)称之为v的标量。p是关于v的谓词,记为p(v).
m将v映射到M中的另一个元素。
则用m构造一个序列 (v1,v2,,vn) ,
要证明 p(vn) ,即证明 p(v1)p(vi)p(vi+1) ,事实上这是数学归纳法
要证明 g(vn)>g(v1) ,即证明 i,g(vi)>g(vi1) .
这种证明的方式,本质上利用了向量空间的性质。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值