numpy矩阵合并 (np.vstack np.hstack np.dstack)

本文介绍了numpy中用于矩阵合并的三个函数:np.vstack用于行合并,np.hstack用于列合并,而np.dstack则在第三个维度上进行合并。详细解释了每个函数的工作原理和使用场景。
摘要由CSDN通过智能技术生成

#numpy矩阵合并 (np.vstack np.hstack np.dstack)

##np.vstack()
np.vstack() 函数会将多个矩阵在第一个纬度方向(行)合并,相当与np.concatenate(tup, axis=0)

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array([[1, 2, 3],[4, 5, 6]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[4], [5], [6]])
>>> np.vstack((a,b))
array([[1], [2], [3], [4], [5], [6]])

##np.hstack()
hstack() 函数会将多个矩阵在第二个纬度方向(列)合并,相当与np.concatenate(tup, axis=1)

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])

如果矩阵只有一个纬度,就将其合并

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])

如果矩阵有多个纬度,只按第二个纬度合并

>&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值