基于L0测度的优化能量公式的流场平滑

视频网址:https://www.bilibili.com/video/av36468467/

代码网址:https://download.csdn.net/download/lykymy/10799373

图像能量的计算

long min_energy(int value1, int value2)
{
	int min_difference1 = 100, min_difference2 = 100;
	int min_difference = abs(value2 - value1);
	if ((value1 - 0) < min_difference1)
	{
		min_difference1 = value1 - 0;
	}
	if ((90 - value1) < min_difference1)
	{
		min_difference1 = 90 - value1;
	}
	if ((value2 - 0) < min_difference2)
	{
		min_difference2 = value2 - 0;
	}
	if ((90 - value2) < min_difference2)
	{
		min_difference2 = 90 - value2;
	}
	if (min_difference < (min_difference1 + min_difference2))
	{
		long temp = min_difference * min_difference;
		return temp;
	}
	else
	{
		long temp = (min_difference1 + min_difference2) * (min_difference1 + min_difference2);
		return temp;
	}
}
void energy_solve(Mat & image, int time)
{
	long sum = 0, temp = 0, up_difference = 0, down_difference = 0, left_difference = 0 , right_difference = 0;
	for (int i = 1; i < image.rows - 1; i++)
	{
		for (int j = 1; j < image.cols - 1; j++)
		{
			up_difference = min_energy(image.at<short>(i, j) , image.at<short>(i - 1, j));
			down_difference = min_energy(image.at<short>(i, j) , image.at<short>(i + 1, j));
			left_difference = min_energy(image.at<short>(i, j) , image.at<short>(i, j - 1));
			right_difference = min_energy(image.at<short>(i, j) , image.at<short>(i, j + 1));
			temp = sqrt(up_difference + down_difference + left_difference + right_difference);
			sum += temp;
		}
	}
	cout << "This is "<< time << " Flow Field Energy Value : " << sum << endl;
}

L0测度平滑处理

void l0_smooth(Mat & image, float angle_rate, float side_rate, float left_down_rate, float right_down_rate, float right_top_rate, int time)
{
	//创建grad_x和grad_y 、abs_grad_x和abs_grad_y矩阵
	Mat grad_x; 
	Mat grad_y;
	//创建sobel算子处理显示图片
	Mat sobel_img = Mat::zeros(image.size(), CV_16S);
	int scale = 1;
	int delta = 0;
	int ddepth = CV_16S;
	//求X方向梯度
	Sobel(image, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
	//求Y方向梯度
	Sobel(image, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
	//构建流场
	for (int i = 0; i < image.rows; i++)
	{
		for (int j = 0; j < image.cols; j++)
		{
			if (grad_x.at<ushort>(i, j) != 0)
			{
				sobel_img.at<short>(i, j) = atan(fabs(grad_y.at<ushort>(i, j) / grad_x.at<ushort>(i, j)));
			}
			else
			{
				sobel_img.at<short>(i, j) = 90;
			}
		}
	}
	//构造l0平滑流场
	Mat l0_img = Mat::zeros(sobel_img.size(), CV_16S);
	//构造临时变量
	int left_down_value, right_down_value, right_top_value;
	//计算图像的能量值
	energy_solve(sobel_img, 0);
	//重复迭代time次
	for (int k = 1; k <= time; k++)
	{
		//进行l0平滑,处理中间部分
		for (int i = 1; i < sobel_img.rows - 1; i++)
		{
			for (int j = 1; j < sobel_img.cols - 1; j++)
			{
				left_down_value = (sobel_img.at<short>(i - 1, j) - sobel_img.at<short>(i, j)) + (sobel_img.at<short>(i, j + 1) - sobel_img.at<short>(i, j)) + 2 * (sobel_img.at<short>(i - 1, j - 1) - sobel_img.at<short>(i, j));
				right_down_value = (sobel_img.at<short>(i - 1, j) - sobel_img.at<short>(i, j)) + (sobel_img.at<short>(i, j - 1) - sobel_img.at<short>(i, j)) + 2 * (sobel_img.at<short>(i + 1, j + 1) - sobel_img.at<short>(i, j));
				right_top_value = (sobel_img.at<short>(i + 1, j) - sobel_img.at<short>(i, j)) + (sobel_img.at<short>(i, j - 1) - sobel_img.at<short>(i, j)) + 2 * (sobel_img.at<short>(i - 1, j + 1) - sobel_img.at<short>(i, j));
				l0_img.at<short>(i, j) = sobel_img.at<short>(i, j) + left_down_value *left_down_rate + right_down_value * right_down_rate + right_top_value * right_top_rate;
			}
		}
		//进行l0平滑,处理上边缘部分
		for (int t = 1; t < sobel_img.cols - 1; t++)
		{
			l0_img.at<short>(0, t) = sobel_img.at<short>(0, t) + side_rate * ((sobel_img.at<short>(0, t - 1) - sobel_img.at<short>(0, t)) + (sobel_img.at<short>(1, t) - sobel_img.at<short>(0, t)) + (sobel_img.at<short>(0, t + 1) - sobel_img.at<short>(0, t)));
		}
		//进行l0平滑,处理下边缘部分
		for (int t = 1; t < sobel_img.cols - 1; t++)
		{
			l0_img.at<short>(l0_img.rows - 1, t) = sobel_img.at<short>(sobel_img.rows - 1, t) + side_rate * ((sobel_img.at<short>(sobel_img.rows - 1, t - 1) - sobel_img.at<short>(sobel_img.rows - 1, t)) + (sobel_img.at<short>(sobel_img.rows - 2, t) - sobel_img.at<short>(sobel_img.rows - 1, t)) + (sobel_img.at<short>(sobel_img.rows - 1, t + 1) - sobel_img.at<short>(sobel_img.rows - 1, t)));
		}
		//进行l0平滑,处理左边缘部分
		for (int t = 1; t < sobel_img.rows - 1; t++)
		{
			l0_img.at<short>(t, 0) = sobel_img.at<short>(t, 0) + side_rate * ((sobel_img.at<short>(t - 1, 0) - sobel_img.at<short>(t, 0)) + (sobel_img.at<short>(t, 1) - sobel_img.at<short>(t, 0)) + (sobel_img.at<short>(t + 1, 0) - sobel_img.at<short>(t, 0)));
		}
		//进行l0平滑,处理右边缘部分
		for (int t = 1; t < sobel_img.rows - 1; t++)
		{
			l0_img.at<short>(t, l0_img.cols - 1) = sobel_img.at<short>(t, sobel_img.cols - 1) + side_rate * ((sobel_img.at<short>(t - 1, sobel_img.cols - 1) - sobel_img.at<short>(t, sobel_img.cols - 1)) + (sobel_img.at<short>(t, sobel_img.cols - 2) - sobel_img.at<short>(t, sobel_img.cols - 1)) + (sobel_img.at<short>(t + 1, sobel_img.cols - 1) - sobel_img.at<short>(t, sobel_img.cols - 1)));
		}
		//进行l0平滑,处理左上角
		l0_img.at<short>(0, 0) = sobel_img.at<short>(0, 0) + angle_rate * ((sobel_img.at<short>(0, 1) - sobel_img.at<short>(0, 0)) + (sobel_img.at<short>(1, 1) - sobel_img.at<short>(0, 0)) + (sobel_img.at<short>(1, 0) - sobel_img.at<short>(0, 0)));
		//进行l0平滑,处理右上角
		l0_img.at<short>(0, l0_img.cols - 1) = sobel_img.at<short>(0, sobel_img.cols - 1) + angle_rate * ((sobel_img.at<short>(0, sobel_img.cols - 2) - sobel_img.at<short>(0, sobel_img.cols - 1)) + (sobel_img.at<short>(1, sobel_img.cols - 2) - sobel_img.at<short>(0, sobel_img.cols - 1)) + (sobel_img.at<short>(1, sobel_img.cols - 1) - sobel_img.at<short>(0, sobel_img.cols - 1)));
		//进行l0平滑,处理左下角
		l0_img.at<short>(l0_img.rows - 1, 0) = sobel_img.at<short>(sobel_img.rows - 1, 0) + angle_rate * ((sobel_img.at<short>(sobel_img.rows - 2, 0) - sobel_img.at<short>(sobel_img.rows - 1, 0)) + (sobel_img.at<short>(sobel_img.rows - 2, 1) - sobel_img.at<short>(sobel_img.rows - 1, 0)) + (sobel_img.at<short>(sobel_img.rows - 1, 1) - sobel_img.at<short>(sobel_img.rows - 1, 0)));
		//进行l0平滑,处理右下角
		l0_img.at<short>(l0_img.rows - 1, l0_img.cols - 1) = sobel_img.at<short>(l0_img.rows - 1, sobel_img.cols - 1) + angle_rate * ((sobel_img.at<short>(l0_img.rows - 1, sobel_img.cols - 2) - sobel_img.at<short>(l0_img.rows - 1, sobel_img.cols - 1)) + (sobel_img.at<short>(l0_img.rows - 2, sobel_img.cols - 2) - sobel_img.at<short>(l0_img.rows - 1, sobel_img.cols - 1)) + (sobel_img.at<short>(l0_img.rows - 2, sobel_img.cols - 1) - sobel_img.at<short>(l0_img.rows - 1, sobel_img.cols - 1)));
		for (int i = 0; i < l0_img.rows; i++)
		{
			for (int j = 0; j < l0_img.cols; j++)
			{
				if (l0_img.at<short>(i , j) < 0)
				{
					l0_img.at<short>(i, j) = 0;
				}
				if (l0_img.at<short>(i, j) > 90)
				{
					l0_img.at<short>(i, j) = 90;
				}
			}
		}
		//获取下次迭代图像
		sobel_img = l0_img.clone();
		//计算当前的图像能量
		energy_solve(l0_img, k);
	}
}

效果

原始处理图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值