摘要
- 大多数现有的斑点减少过滤器倾向于集中特征附近的模糊,并引入孔伪影,使后续处理程序变得复杂。
- 基于优化的方法可以使所有的分布均匀、透明,从而更好地保持特性。
- 提出了一种基于L0最小化的超声散斑抑制优化框架。
- 我们观察到GAP,结合梯度和相位信息的间隙,在去斑点图像(输出)中比斑点图像(输入)中要稀疏得多。
- 我们提出了一个L0最小化框架来消除斑点噪声,同时保留超声图像中的特征。
- 它寻求间隙值的l0稀疏性,这种稀疏性是通过迭代将小间隙值减少到零来实现的。由于特征具有比斑点噪声更大的间隙大小,因此所提出的l0最小化能够有效地抑制斑点噪声。同时,其余与突出特征相对应的间隙值保持不变,从而更好地保留这些特征。
- 我们还提出了一个有效且鲁棒的数值方案,将原来难以处理的L0最小化转化为若干次优化,从而快速找到它们的封闭形式解。
Introduction
- 目前提出了多种超声波散斑抑制方法。这些方法大致可分为两类:基于小波的滤波器和空间滤波器。
- 假设乘性散斑噪声可以通过对数运算转化为加性高斯噪声,基于小波变换的方法将变换后的图像在不同的方向和分辨率尺度下分解为多个子带。尽管这些方法可以有效地去除斑点噪声,但在保留特征时,它们往往会产生振铃效应。
- 通过利用空间相关性,空间过滤器计算出一组候选对象的加权平均值的去斑点结果。根据候选对象的选择,这些过滤器分为本地过滤器和非本地过滤器。
- 空间过滤器将集中边缘的滤波,并且引入孔伪影。然而,新的方法通过将空间过滤器应用在全局范围内分布内的每个像素中,从而在没有孔伪影的情况下产生出色的恢复结果。空间过滤器不能像基于全局优化的过滤器那样保留锐边。
- 最近,在[Fast feature-preserving speckle reduction for ultrasound images via phase congruency]中提出了一种基于全局优化的去检测方法,该方法以加权最小二乘滤波的方式对斑点噪声和特征进行不同的惩罚[13]。但是,为了抑制散斑噪声,突出的边缘不可避免地会受到一些惩罚,从而在一定程度上降低了特征对比度和模糊特征。为了规避这个问题,Xu等人提出了一种基于l0范数的优化方法,以全局控制使用逐步阈值化程序,来实现控制的非零条目的数量,从而更好地保留非零显著边。
- 本文提出了一种基于L0最小化框架的超声图像保斑全局优化方法。基于图像梯度的稀疏先验和局部相位特征不对称(FA)算子的特征检测能力,我们将梯度和FA算子结合起来,提出了一种新的测量方法(即间隙),间隙继承了这两个属性。
- 本文提出了