python merge、concat合并数据集

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LY_ysys629/article/details/73849543

数据规整化:合并、清理、过滤

pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!

本篇博客主要介绍:

合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。

合并数据集

1) merge 函数参数

参数 说明
left 参与合并的左侧DataFrame
right 参与合并的右侧DataFrame
how 连接方式:‘inner’(默认);还有,‘outer’、‘left’、‘right’
on 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键
left_on 左侧DataFarme中用作连接键的列
right_on 右侧DataFarme中用作连接键的列
left_index 将左侧的行索引用作其连接键
right_index 将右侧的行索引用作其连接键
sort 根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能
suffixes 字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x’,‘_y’).例如,左右两个DataFrame对象都有‘data’,则结果中就会出现‘data_x’,‘data_y’
copy 设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值

1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值)

import pandas as pd
import numpy as np

df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})

df1
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
df2 = pd.DataFrame({'key':['a','b','d'],'data2':range(3)})

df2
data2 key
0 0 a
1 1 b
2 2 d
pd.merge(df1,df2)#默认情况
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
df1.merge(df2)
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
df1.merge(df2,on = 'key',how = 'inner')#内连接,取交集
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
df1.merge(df2,on = 'key',how = 'outer')#外链接,取并集,并用nan填充
data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0
df1.merge(df2,on = 'key',how = 'left')#左连接,左侧DataFrame取全部,右侧DataFrame取部分
data1 key data2
0 0 b 1.0
1 1 b 1.0
2 2 a 0.0
3 3 c NaN
4 4 a 0.0
5 5 a 0.0
6 6 b 1.0
df1.merge(df2,on = 'key',how = 'right')#右连接,右侧DataFrame取全部,左侧DataFrame取部分
data1 key data2
0 0.0 b 1
1 1.0 b 1
2 6.0 b 1
3 2.0 a 0
4 4.0 a 0
5 5.0 a 0
6 NaN d 2

如果左右侧DataFrame的连接键列名不一致,但是取值有重叠,可使用left_on、right_on来指定左右连接键

df3 = pd.DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1': range(7)})

df3
data1 lkey
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
df4 = pd.DataFrame({'rkey':['a','b','d'],'data2':range(3)})

df4
data2 rkey
0 0 a
1 1 b
2 2 d
df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a

2、多对多的合并(一个表的连接键列有重复值,另一个表中的连接键有重复值)

df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})

df1
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
df5 = pd.DataFrame({'key':['a','b','a','b','b'],'data2': range(5)})
df5
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 b
df1.merge(df5)
data1 key data2
0 0 b 1
1 0 b 3
2 0 b 4
3 1 b 1
4 1 b 3
5 1 b 4
6 6 b 1
7 6 b 3
8 6 b 4
9 2 a 0
10 2 a 2
11 4 a 0
12 4 a 2
13 5 a 0
14 5 a 2

合并小结

1)默认情况下,会将两个表中相同列名作为连接键

2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5’,右表有两个值‘2,3’,则会形成,(1,2)(1,3)(3,1),(3,2)。。。6种组合)

3)存在多个连接键的处理

left = pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','one','two'],'lval':[1,2,3]})

right = pd.DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})
left
key1 key2 lval
0 foo one 1
1 foo one 2
2 bar two 3
right
key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7
pd.merge(left,right,on = ['key1','key2'],how = 'outer')
key1 key2 lval rval
0 foo one 1.0 4
1 foo one 1.0 5
2 foo one 2.0 4
3 foo one 2.0 5
4 bar two 3.0 7
5 bar one NaN 6

1)连接键是多对多关系,应执行笛卡尔积形式

2)多列应看连接键值对是否一致

4)对连接表中非连接列的重复列名的处理

pd.merge(left,right,on = 'key1')
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo one 2 one 4
3 foo one 2 one 5
4 bar two 3 one 6
5 bar two 3 two 7
pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo one 2 one 4
3 foo one 2 one 5
4 bar two 3 one 6
5 bar two 3 two 7

2)索引上的合并

当连接键位于索引中时,成为索引上的合并,可以通过merge函数,传入left_index、right_index来说明应该被索引的情况。

  1. 一表中连接键是索引列、另一表连接键是非索引列
left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value': range(6)})
left1
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5
right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b'])
right1
group_val
a 3.5
b 7.0
pd.merge(left1,right1,left_on = 'key',right_index = True)
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

有上可知,left_on、right_on是指定表中非索引列为连接键,left_index、right_index是指定表中索引列为连接键,两者可以组合,是为了区分是否是索引列

  1. 两个表中的索引列都是连接键
left2 = pd.DataFrame(np.arange(6).reshape(3,2),index = ['a','b','e'],columns = ['0hio','nevada'])

right2 = pd.DataFrame(np.arange(7,15).reshape(4,2),index = ['b','c','d','e'],columns = ['misso','ala'])

left2
0hio nevada
a 0 1
b 2 3
e 4 5
right2
misso ala
b 7 8
c 9 10
d 11 12
e 13 14
pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer')
0hio nevada misso ala
a 0.0 1.0 NaN NaN
b 2.0 3.0 7.0 8.0
c NaN NaN 9.0 10.0
d NaN NaN 11.0 12.0
e 4.0 5.0 13.0 14.0

3)轴向连接

在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数

#numpy
arr =np.arange(12).reshape(3,4)
arr
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
np.concatenate([arr,arr],axis = 1)#横轴连接块
    array([[ 0,  1,  2,  3,  0,  1,  2,  3],
           [ 4,  5,  6,  7,  4,  5,  6,  7],
           [ 8,  9, 10, 11,  8,  9, 10, 11]])

concat函数参数表格

参数 说明
objs 参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数
axis=0 指明连接的轴向,0是纵轴,1是横轴,默认是0
join ‘inner’(交集),‘outer’(并集),默认是‘outer’指明轴向索引的索引是交集还是并集
join_axis 指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集
keys 与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话)
levels 指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话
names 用于创建分层级别的名称,如果设置keys或levels的话
verify_integrity 检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复
ignore_index 不保留连接轴上的索引,产生一组新索引range(total_length)
s1 = pd.Series([0,1,2],index = ['a','b','c'])

s2 = pd.Series([2,3,4],index = ['c','f','e'])

s3 = pd.Series([4,5,6],index = ['c','f','g'])
pd.concat([s1,s2,s3])#默认并集、纵向连接
a 0 b 1 c 2 c 2 f 3 e 4 c 4 f 5 g 6 dtype: int64
pd.concat([s1,s2,s3],ignore_index = True)#生成纵轴上的并集,索引会自动生成新的一列
0 0 1 1 2 2 3 2 4 3 5 4 6 4 7 5 8 6 dtype: int64
pd.concat([s1,s2,s3],axis = 1,join = 'inner')#纵向取交集,注意该方法对对象表中有重复索引时失效
0 1 2
c 2 2 4
pd.concat([s1,s2,s3],axis = 1,join = 'outer')#横向索引取并集,纵向索引取交集,注意该方法对对象表中有重复索引时失效
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c 2.0 2.0 4.0
e NaN 4.0 NaN
f NaN 3.0 5.0
g NaN NaN 6.0

concat函数小结

1)纵向连接,ignore_index = False ,可能生成重复的索引

2)横向连接时,对象索引不能重复

4)合并重叠数据

适用范围:

1)当两个对象的索引有部分或全部重叠时

2)用参数对象中的数据为调用者对象的缺失数据‘打补丁’

a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['a','b','c','d','e','f'])

b = pd.Series(np.arange(len(a)),index = ['a','b','c','d','e','f'])
a
a    NaN
b    2.5
c    NaN
d    3.5
e    4.5
f    NaN
dtype: float64
b
a    0
b    1
c    2
d    3
e    4
f    5
dtype: int32
a.combine_first(b)#利用b填补了a的空值
a    0.0
b    2.5
c    2.0
d    3.5
e    4.5
f    5.0
dtype: float64
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['g','b','c','d','e','f'])
a.combine_first(b)#部分索引重叠
a    0.0
b    2.5
c    2.0
d    3.5
e    4.5
f    5.0
g    NaN
dtype: float64

小结

本篇博客主要讲述了一下内容:

1) merge函数合并数据集

2)concat函数合并数据集

3)combine_first函数,含有重叠索引的缺失值填补

展开阅读全文

没有更多推荐了,返回首页