题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3466
这是一道dp题目,作为菜鸟的我刚知道他叫DAG上的动态规划,DAG就是一种图吧,这个题的题义也可以大体看成一个图,N个点,这N个点连起来,
说一下题意某某某在1号车站,想去N号车站去会见一个人,然后他想尽量多的在车上度过,在站台转车不需要耗费时间,给你两个时间表,分别是从第一个车站->最后一个车站从第一个车站发车时间,从左后一个车站开往第一个车站从最后一个车站发车时间,另外还给你了从n-1 --- n 车站之间需要花费的时间,然后去求他需要在车站呆的最短时间
输入实例:
N -------------N个车站
T ---------------约定的时间
t1,t2,t3,t4 ----------------路上的时间 ti 代表i 和 i+1 车站之间
M1 ----------------1车站发车 有多少个时间点
d1,d2,d3,d4 --------------------1车站发车的时间点
M2 --------------------n车站发车有多少个时间点
e1,e2,e3,e4 --------------------n车站发车的时间点
、
然后说一下dp策略:
开一个二维数组,dp[i][j]表示i时刻,在j车站最少等待时间,那么一点时间也没用的时候dp[T][N]就是等于0,其他的INF就行,既然是剩余时间,就那么就从后往前找,每个点都是三种情况,要么我在上一点的基础上等待一分钟,要么就上车往左,要么就上车往右,如还迷茫 来看下代码试试
对啦,我想说一下为什么时间要倒着来,书上给的是时间是一个天然的“序”,我一点都不理解,还有最后为什么输出的是dp[0][1],更是惊讶,有没有大牛看到这篇文章 给我讲讲
My ugly code
//
// main.cpp
// C_workspace
//
// Created by ldu on 2017/10/13.
// Copyright © 2017年 ldu. All rights reserved.
//
#include <iostream>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=550;
int N,T,t[maxn],M1,d[maxn],M2,e[maxn];
bool hasR[maxn][maxn],hasL[maxn][maxn];
int dp[maxn][maxn];
int cas=1;
int main() {
while(~scanf("%d",&N)&&N){
scanf("%d",&T);
for(int i=1;i<=N-1;i++){
scanf("%d",&t[i]);
}
scanf("%d",&M1);
for (int i=1; i<=M1; i++) {
scanf("%d",&d[i]);
}
scanf("%d",&M2);
for (int i=1; i<=M2; i++) {
scanf("%d",&e[i]);
}
/*开始处理发车时间*/
memset(hasR, false,sizeof(hasR));
memset(hasL, false, sizeof(hasL));
int tim;
for(int i=1;i<=M1;i++){
/*1-》n 方向*/
tim=d[i];
for(int j=1;j<=N;j++){
hasR[tim][j]=true;
if(j != N) tim+=t[j];
}
}
for(int i=1;i<=M2;i++){
tim=e[i];
/*n -》 1 方向*/
for(int j=N;j>=1;j--){
hasL[tim][j]=true;
if(j != 1) tim+=t[j-1];
}
}
memset(dp, 0x3f, sizeof(dp));
dp[T][N]=0;
for (int i=T-1;i>=0 ; i--) {
for(int j=1;j<=N;j++){
/*三种情况处理*/
dp[i][j]=dp[i+1][j]+1;
if( j < N && i+t[j] <=T && hasR[i][j]){
dp[i][j]=min(dp[i][j],dp[i+t[j]][j+1]);
}
if( j > 1 && i+t[j-1] <=T && hasL[i][j] ){
dp[i][j]=min(dp[i][j],dp[i+t[j-1]][j-1]);
}
}
}
/*最后我们要的是把时间花费干净,然后就是dp[0][1]*/
printf("Case Number %d: ",cas++);
if(dp[0][1] >= 0x3f3f3f3f) printf("impossible\n");
else printf("%d\n",dp[0][1]);
}
}