《矩阵论引论》田振际——P40-例2.4+标准正交化

标签: 矩阵论引论 施密特正交化 Schmidt
3人阅读 评论(0) 收藏 举报
分类:
clear
clc
%《矩阵论引论》田振际 王永铎...
%P402.4
%% 施密特正交化方法
format rat
a1=[1 1 0 0];
a2=[1 0 1 0];
a3=[-1 0 0 1];
a4=[1 -1 -1 1];
a1 = sym( a1,'f');%定义浮点类型
b1=a1
e1=simplify(b1/norm(b1))%单位化
b2=a2-dot(a2,e1)*e1
e2=simplify(b2/norm(b2))
b3=a3-dot(a3,e2).*e2-dot(a3,e1).*e1
e3=simplify(b3/norm(b3))
b4=a4-dot(a4,e3)*e3-dot(a4,e2)*e2-dot(a4,e1)*e1
e4=simplify(b4/norm(b4))
disp('从而e1 e2 e3 e4就是两两正交的单位向量组。')

这里写图片描述

clear
clc
%《矩阵论引论》田振际 王永铎...
%P60 习题2.7
%% 施密特正交化方法
format rat
%% 写系数矩阵
A=[2 1 -1 1 -3;1 1 -1 0 1];
%% 求基础解系
B=null(A,'r')
%% 标准正交化
a1=B(:,1)';
a2=B(:,2)';
a3=B(:,3)';
a1 = sym( a1,'f');%定义浮点类型
b1=a1
e1=simplify(b1/norm(b1))%单位化
b2=a2-dot(a2,e1)*e1
e2=simplify(b2/norm(b2))
b3=a3-dot(a3,e2).*e2-dot(a3,e1).*e1
e3=simplify(b3/norm(b3))
disp('从而e1 e2 e3 就是两两正交的单位向量组。')
B =
       0             -1              4       
       1              1             -5       
       1              0              0       
       0              1              0       
       0              0              1       

b1 = [ 0, 1, 1, 0, 0] 
e1 = [ 0, 2^(1/2)/2, 2^(1/2)/2, 0, 0] 
b2 = [ -1, 1/2, -1/2, 1, 0] 
e2 = [ -10^(1/2)/5, 10^(1/2)/10, -10^(1/2)/10, 10^(1/2)/5, 0] 
b3 = [ 7/5, -6/5, 6/5, 13/5, 1] 
e3 = [ 35^(1/2)/15, -(2*35^(1/2))/35, (2*35^(1/2))/35, (13*35^(1/2))/105, 35^(1/2)/21]

从而e1 e2 e3 就是两两正交的单位向量组。
查看评论

登录页面出来的时候,可否将focus直接置到“用户名”输入框里面?

登录页面出来的时候,可否将focus直接置到“用户名”输入框里面?这样比较方便。目前的情形是:登录页面出来之后,需要按三次Tab才能将focus切到“用户名”输入框;或者需要鼠标做精确定位置放focu...
  • kingofark
  • kingofark
  • 2004-04-23 02:23:00
  • 2148

《矩阵论引论》田振际——P30-1.4

clear clc %《矩阵论引论》田振际 王永铎... %P30 第4题 format rat syms a a1=[1 0 0 0]'; a2=[0 1 0 0]'; a3=[0 0 1 0]';...
  • LZX19901012
  • LZX19901012
  • 2018-04-17 11:50:55
  • 7

线性代数(答案!全)

  • 2009年03月17日 20:58
  • 6.63MB
  • 下载

线性代数(三十九) :格拉姆-施密特正交化与标准正交基

本节介绍正交的概念,以及将基变为正交基的格拉姆-施密特(Gram-Schmidt)方法 0 回顾正交基 1 正交 如果向量x,y满足: 则称x与y正交(orthogonal)或者垂直(perpen...
  • xxingjjing
  • xxingjjing
  • 2014-03-24 19:41:22
  • 7256

矩阵论引论 北航出版社 陈祖明

  • 2009年04月29日 14:33
  • 6.49MB
  • 下载

【线性代数】标准正交矩阵与Gram-Schmidt正交化

1、标准正交矩阵     假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式: 则 若Q为方阵,由上面的式子则有 我们举例说明上述概念: 2、标准正交矩阵的好处...
  • tengweitw
  • tengweitw
  • 2014-12-06 15:04:01
  • 11671

《矩阵论引论》田振际——状态方程的约当规范形

%% 求约当规范形 clear clc %% 给定一个线性时不变系统的状态方程为 disp('变换前系数矩阵:') A=[2 -1 -1;0 -1 0;0 2 1] B=[7 2 3]' %% (1)...
  • LZX19901012
  • LZX19901012
  • 2018-03-29 16:51:56
  • 9

施密特正交化的几何解释

线性代数中最头疼的公式恐怕就是施密特正交化了。但其实搞清楚它的几何原理之后公式的记忆就简单多了,数学重在理解!给定一组基α1,α2,...,αn\alpha_1,\alpha_2,...,\alpha...
  • newworld123made
  • newworld123made
  • 2016-05-19 01:25:06
  • 10273

matlab-线性代数 施密特正交化

       慈心积善融学习,技术愿为有情学。善心速造多好事,前人栽树后乘凉。我今于此写经验,愿见文者得启发。%施密特正交化,自己写的你们看着,有错误自行修改 a=ones(4,2); %四行,...
  • yushaopu
  • yushaopu
  • 2016-06-30 10:28:40
  • 3154

自己动手写施密特正交化

import numpy as np A = np.array([[1,1,0],[0,1,1],[1,0,1]],dtype=float) Q = np.zeros_like(A) m = shap...
  • panghaomingme
  • panghaomingme
  • 2017-03-09 17:31:57
  • 2619
    个人资料
    等级:
    访问量: 19万+
    积分: 3172
    排名: 1万+
    最新评论