二项式反演证明

二项式反演有两种形式:

  1. 对称形式

f ( n ) = ∑ i = 0 n ( − 1 ) i ( n i ) g ( i ) ⇔ g ( n ) = ∑ i = 0 n ( − 1 ) i ( n i ) f ( i ) f(n)=\sum_{i=0}^n(-1)^i{n\choose i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^i{n\choose i}f(i) f(n)=i=0n(1)i(in)g(i)g(n)=i=0n(1)i(in)f(i)

  1. 常用形式

f ( n ) = ∑ i = 0 n ( n i ) g ( i ) ⇔ g ( n ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( i ) f(n)=\sum_{i=0}^n{n\choose i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i}{n\choose i}f(i) f(n)=i=0n(in)g(i)g(n)=i=0n(1)ni(in)f(i)

下面证明第 1 种形式:

已知

g ( n ) = ∑ i = 0 n ( − 1 ) i ( n i ) f ( i ) g(n)=\sum_{i=0}^n(-1)^i{n\choose i}f(i) g(n)=i=0n(1)i(in)f(i)

那么

∑ i = 0 n ( − 1 ) i ( n i ) g ( i ) = ∑ i = 0 n ( − 1 ) i ( n i ) ∑ j = 0 i ( − 1 ) j ( i j ) f ( j ) = ∑ i = 0 n ∑ j = 0 i ( − 1 ) i + j ( n i ) ( i j ) f ( j ) = ∑ i = 0 n ∑ j = 0 i ( − 1 ) i + j ( n j ) ( n − j i − j ) f ( j ) = ∑ j = 0 n ( − 1 ) j ( n j ) f ( j ) ∑ i = j n ( − 1 ) i ( n − j i − j ) = ∑ j = 0 n ( − 1 ) j ( n j ) f ( j ) ∑ i = 0 n − j ( − 1 ) i + j ( n − j i ) = ∑ j = 0 n ( n j ) f ( j ) ∑ i = 0 n − j ( − 1 ) i ( n − j i ) = ∑ j = 0 n ( n j ) f ( j ) [ j = = n ] = f ( n ) \begin{aligned} \sum_{i=0}^n(-1)^i{n\choose i}g(i)&=\sum_{i=0}^n(-1)^i{n\choose i}\sum_{j=0}^i(-1)^j{i\choose j}f(j) \\&=\sum_{i=0}^n\sum_{j=0}^i(-1)^{i+j}{n\choose i}{i\choose j}f(j) \\&=\sum_{i=0}^n\sum_{j=0}^i(-1)^{i+j}{n\choose j}{n-j\choose i-j}f(j) \\&=\sum_{j=0}^n(-1)^j{n\choose j}f(j)\sum_{i=j}^n(-1)^{i}{n-j\choose i-j} \\&=\sum_{j=0}^n(-1)^j{n\choose j}f(j)\sum_{i=0}^{n-j}(-1)^{i+j}{n-j\choose i} \\&=\sum_{j=0}^n{n\choose j}f(j)\sum_{i=0}^{n-j}(-1)^{i}{n-j\choose i} \\&=\sum_{j=0}^n{n\choose j}f(j)[j==n] \\&=f(n) \end{aligned} i=0n(1)i(in)g(i)=i=0n(1)i(in)j=0i(1)j(ji)f(j)=i=0nj=0i(1)i+j(in)(ji)f(j)=i=0nj=0i(1)i+j(jn)(ijnj)f(j)=j=0n(1)j(jn)f(j)i=jn(1)i(ijnj)=j=0n(1)j(jn)f(j)i=0nj(1)i+j(inj)=j=0n(jn)f(j)i=0nj(1)i(inj)=j=0n(jn)f(j)[j==n]=f(n)

证毕。

大致思路:

  1. 代入法。
  2. 操作组合数,用 ( n j ) n\choose j (jn) 代替 ( n i ) n\choose i (in)
  3. 杨辉三角同一行分别带上 +-+- 的符号,最终得到的结果除了第一行之外都是 0,比如 1-4+6-4+1=01-5+10-10+5-1=0 。证明只要用组合数递推式拆开就好了,或者用二项式定理化成 ( 1 − 1 ) n − j = [ j = = n ] (1-1)^{n-j}=[j == n] (11)nj=[j==n]

对于第 2 种形式,只要令 G ( n ) = ( − 1 ) n g ( n ) G(n)=(-1)^ng(n) G(n)=(1)ng(n) 就可以转化为第一种形式了。

第 2 种形式的感性理解:容斥中恰好和至多之间的关系。一般也就是这样应用的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值