BZOJ3108: [cqoi2013]图的逆变换

7 篇文章 0 订阅

这里写图片描述怎么会有题目写了一个k后面一个括号写m的范围…..被坑死了还是师兄看出来的…


这题样例理解了模拟就行,不要想太复杂
这里写图片描述这是第二个样例的D图,
样例给出了 0>1>32>1>32>1>4 三条边,但是构造出的图还应有 0>1>4 ,所以无解
然后可以得出一个结论,对于这里写图片描述这样的E图,所有连向0号点的点连出去的点应该是一样的,比如图中1,2两点都连向0但1连向3而2没有向3的出边,所以这样的E图无解


code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxm = 210000;
const int maxn = 310;
struct edge
{
    int y,nex;
    edge(){}
    edge(int _y,int _nex){y=_y;nex=_nex;}
}a[maxm]; int len,fir[maxn];
int u[maxn][maxn],ul[maxn],o[maxn];
int n,m;
void ins(int x,int y)
{
    len++;
    a[len].y=y;
    a[len].nex=fir[x]; fir[x]=len;
}
bool v[maxn];
int glen;

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(fir,0,sizeof fir); len=0;
        memset(o,0,sizeof o);
        memset(ul,0,sizeof ul);

        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
        {
            int x,y; scanf("%d%d",&x,&y); x++; y++;
            ins(x,y); u[y][++ul[y]]=x;
            o[x]++;
        }
        bool flag=true;
        for(int i=1;i<=n;i++)
        {
            if(ul[i]>1)
            {
                memset(v,false,sizeof v);
                int x=u[i][1];
                glen=o[x];
                for(int k=fir[x];k;k=a[k].nex)
                    v[a[k].y]=true;
                for(int j=2;j<=ul[i];j++)
                {
                    x=u[i][j];
                    if(o[x]!=glen) {flag=false; break;}
                    for(int k=fir[x];k;k=a[k].nex)
                        if(!v[a[k].y]) {flag=false; break;}
                    if(!flag) break;
                }
            }
            if(!flag) break;
        }
        if(flag) printf("Yes\n");
        else printf("No\n");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值