假设有四个点i、j、k、t,如果i和j都向k有一条边,并且i和j中有且仅有一个点向t连边,则这个图是不合法的。
为什么呢?令i=ac(按照定义来),j=bc,k=cd,t=ce然后有:
i->k表示a->c->d
j->k表示b->c->d
如果i->t,则有a->c->e,得到b->c->e,即j->t。
反之j->t,则有b->c->e,得到a->c->e,即i->t。
也就是说i和j要么一起连到t要么一起不连到t,直连一个就是不合法的。
#include<cmath>
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 310
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
int T;
int x,y,n,m,i,j,k,flag1,flag2;
int f[N][N];
bool check()
{
fo(i,1,n)
fo(j,i+1,n)
{
flag1 = flag2 = 0;
fo(k,1,n)
{
if (f[i][k] && f[j][k]) flag1 = 1;
if (f[i][k] != f[j][k]) flag2 = 1;
if (flag1 && flag2) return false;
}
}
return true;
}
int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
memset(f,0,sizeof(f));
fo(i,1,m) {scanf("%d%d",&x,&y); x++; y++; f[x][y] = 1;}
if (check()) printf("Yes\n"); else printf("No\n");
}
return 0;
}