BZOJ3167: [Heoi2013]Sao

138 篇文章 0 订阅
本文介绍了一种基于树形动态规划(DP)的算法,该算法适用于解决限制关系构成树结构的问题。通过定义状态f[i][j]表示节点i在其子树序列中排第j位的方案数量,并利用组合数进行状态转移,最终求得所有可能的方案数。文章提供了详细的实现代码及注释。
摘要由CSDN通过智能技术生成

所有限制关系无视方向是一棵树,那么任意定一个点为根,做树形DP,f[i][j]表示i在其子树的序列中排第j位的方案数,转移的话组合数弄一下,直接这样转移会发现复杂度很高,但是转移的方程可以转化一下,会发现每个点维护f值的前缀后缀和即可剪掉一维


#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn = 1100;
const ll Mod = 1e9+7;

struct edge
{
    int y,c,nex;
    edge(){}
    edge(int _y,int _c,int _nex){y=_y; c=_c; nex=_nex;}
}a[maxn<<1]; int len,fir[maxn];
void ins(int x,int y,int c) 
{
    a[++len]=edge(y,c,fir[x]); fir[x]=len;
    a[++len]=edge(x,-c,fir[y]); fir[y]=len;
}
ll f[maxn][maxn],si[maxn],N[maxn];
ll g[maxn],pres[maxn][maxn],las[maxn][maxn];
int siz[maxn],fa[maxn];
int n;

ll pw(ll x,int k)
{
    ll r=1,t=x;
    for(;k;k>>=1,t=t*t%Mod) if(k&1) r=r*t%Mod;
    return r;
}
ll Ni(ll x) { return pw(x,Mod-2); }
ll cal(ll n,ll m) 
{ 
    if(!m||n==m)return 1ll;
    return si[n]*N[n-m]%Mod*N[m]%Mod; 
}
void dfs(int x)
{
    siz[x]=1; f[x][1]=1;
    for(int k=fir[x];k;k=a[k].nex)
    {
        int y=a[k].y;
        if(y!=fa[x]) 
        {
            fa[y]=x;
            dfs(y);
            siz[x]+=siz[y];
        }
    }
    int kn=1;
    for(int l=fir[x];l;l=a[l].nex)
    {
        int y=a[l].y;
        if(y!=fa[x])
        {
            if(a[l].c==1)
            {
                for(int i=1;i<=kn;i++)
                {
                    for(int k=i+1;k<=i+siz[y];k++)
                    {
                        (g[k]+=f[x][i]*pres[y][k-i]%Mod*cal(k-1,i-1)%Mod*cal(kn+siz[y]-k,kn-i)%Mod)%=Mod;
                    }
                }
            }
            else
            {
                for(int i=1;i<=kn;i++)
                {
                /*  for(int j=1;j<=siz[y];j++) // j>=k-i+1
                    {*/
                        for(int k=i;k<=i+siz[y]-1;k++)
                        {
                            (g[k]+=f[x][i]*las[y][k-i+1]%Mod*cal(k-1,i-1)%Mod*cal(kn+siz[y]-k,kn-i)%Mod)%=Mod;
                        }
                    //}
                }
            }
            kn+=siz[y];
            for(int i=1;i<=kn;i++) f[x][i]=g[i],g[i]=0;
        }
    }
    for(int i=1;i<=kn;i++) pres[x][i]=(pres[x][i-1]+f[x][i])%Mod;
    las[x][kn+1]=0;
    for(int i=kn;i>=1;i--) las[x][i]=(las[x][i+1]+f[x][i])%Mod;
}

int main()
{
    si[1]=1; for(ll i=2;i<=1000;i++) si[i]=si[i-1]*i%Mod;
    N[1000]=Ni(si[1000]); for(ll i=999;i>=1;i--) N[i]=N[i+1]*(i+1)%Mod;

    int t;scanf("%d",&t);
    while(t--)
    {
        memset(fir,0,sizeof fir); len=0;
        memset(f,0,sizeof f);

        scanf("%d",&n);
        for(int i=1;i<n;i++)
        {
            char str;
            int x,y,c;
            scanf("%d",&x); x++;
            getchar(); str=getchar();
            c=str=='>'?1:-1;
            scanf("%d",&y); y++;
            ins(x,y,c);
        }
        dfs(1);
        ll r=0;
        for(int i=1;i<=n;i++) r+=f[1][i];
        r%=Mod;
        printf("%lld\n",r);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值