所有限制关系无视方向是一棵树,那么任意定一个点为根,做树形DP,f[i][j]表示i在其子树的序列中排第j位的方案数,转移的话组合数弄一下,直接这样转移会发现复杂度很高,但是转移的方程可以转化一下,会发现每个点维护f值的前缀后缀和即可剪掉一维
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 1100;
const ll Mod = 1e9+7;
struct edge
{
int y,c,nex;
edge(){}
edge(int _y,int _c,int _nex){y=_y; c=_c; nex=_nex;}
}a[maxn<<1]; int len,fir[maxn];
void ins(int x,int y,int c)
{
a[++len]=edge(y,c,fir[x]); fir[x]=len;
a[++len]=edge(x,-c,fir[y]); fir[y]=len;
}
ll f[maxn][maxn],si[maxn],N[maxn];
ll g[maxn],pres[maxn][maxn],las[maxn][maxn];
int siz[maxn],fa[maxn];
int n;
ll pw(ll x,int k)
{
ll r=1,t=x;
for(;k;k>>=1,t=t*t%Mod) if(k&1) r=r*t%Mod;
return r;
}
ll Ni(ll x) { return pw(x,Mod-2); }
ll cal(ll n,ll m)
{
if(!m||n==m)return 1ll;
return si[n]*N[n-m]%Mod*N[m]%Mod;
}
void dfs(int x)
{
siz[x]=1; f[x][1]=1;
for(int k=fir[x];k;k=a[k].nex)
{
int y=a[k].y;
if(y!=fa[x])
{
fa[y]=x;
dfs(y);
siz[x]+=siz[y];
}
}
int kn=1;
for(int l=fir[x];l;l=a[l].nex)
{
int y=a[l].y;
if(y!=fa[x])
{
if(a[l].c==1)
{
for(int i=1;i<=kn;i++)
{
for(int k=i+1;k<=i+siz[y];k++)
{
(g[k]+=f[x][i]*pres[y][k-i]%Mod*cal(k-1,i-1)%Mod*cal(kn+siz[y]-k,kn-i)%Mod)%=Mod;
}
}
}
else
{
for(int i=1;i<=kn;i++)
{
/* for(int j=1;j<=siz[y];j++) // j>=k-i+1
{*/
for(int k=i;k<=i+siz[y]-1;k++)
{
(g[k]+=f[x][i]*las[y][k-i+1]%Mod*cal(k-1,i-1)%Mod*cal(kn+siz[y]-k,kn-i)%Mod)%=Mod;
}
//}
}
}
kn+=siz[y];
for(int i=1;i<=kn;i++) f[x][i]=g[i],g[i]=0;
}
}
for(int i=1;i<=kn;i++) pres[x][i]=(pres[x][i-1]+f[x][i])%Mod;
las[x][kn+1]=0;
for(int i=kn;i>=1;i--) las[x][i]=(las[x][i+1]+f[x][i])%Mod;
}
int main()
{
si[1]=1; for(ll i=2;i<=1000;i++) si[i]=si[i-1]*i%Mod;
N[1000]=Ni(si[1000]); for(ll i=999;i>=1;i--) N[i]=N[i+1]*(i+1)%Mod;
int t;scanf("%d",&t);
while(t--)
{
memset(fir,0,sizeof fir); len=0;
memset(f,0,sizeof f);
scanf("%d",&n);
for(int i=1;i<n;i++)
{
char str;
int x,y,c;
scanf("%d",&x); x++;
getchar(); str=getchar();
c=str=='>'?1:-1;
scanf("%d",&y); y++;
ins(x,y,c);
}
dfs(1);
ll r=0;
for(int i=1;i<=n;i++) r+=f[1][i];
r%=Mod;
printf("%lld\n",r);
}
return 0;
}