题意
给两组向量,每组有n个n维向量。,求一组字典序最小的匹配方案使得把第一组向量的任意一个替换成其对应的向量后满足这n个向量仍然线性无关。
n<=300
分析
这是14年的集训队论文题。
显然第一组向量是n维向量空间的一组基,那么第二组向量显然都可以由第一组向量表示出来。
这里有一个结论,就是若第一组向量的某个向量j可以由第二组向量的某个向量i替换,当且仅当在用第一组向量表示向量i的式子里,j的系数不为0.
这里简单证明一下。
若j的系数不为0,则j可以由第一组的其他向量加上向量i表示出来,所以j是可以被i替换掉的。
若j的系数等于0,那么在把j替换成i后,i是可以由第一组向量除j外的某些向量表示出来的,也就是说,这是一个线性相关组,所以不能替换。
证毕。
那么我们设这个系数矩阵为C,第一组行向量为矩阵