数这么大不可能真去写高精度…
那么可以考虑模下的解,当模数多的时候可以看成就是方程的解
论良好的模数和常数的重要性….
对于每个模数pi,带0~pi进方程判是否合法(秦九韶),然后枚举1~m每个模数下都满足就认为他满足
code:
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 110;
const int maxm = 1001000;
const int hn = 4;
char str[110000];
ll hk[hn]={10099,23333,24109,20011};
ll ha[hn][maxn];
int v[maxm];
int n,m;
int an,ans[maxm];
int main()
{
/*while(1)
{scanf("%d",&n); int i;
for(i=2;i*2<=n;i++) if(n%i==0) break;
printf("%d\n",i*i>n?1:-1);}*/
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++)
{
scanf("%s",str);
int len=strlen(str);
int fl=1;
if(str[0]=='-') fl=-1;
int at=fl==1?0:1;
for(int k=0;k<hn;k++)
{
int l=0;
for(int j=at;j<len;j++)
l=(l*10+str[j]-'0')%hk[k];
if(fl==-1) l=-l;
ha[k][i]=l;
}
}
for(int i=0;i<hn;i++)
{
for(ll j=0;j<hk[i];j++)
{
ll nw=ha[i][n];
for(int l=n-1;l>=0;l--)
((nw*=j)%=hk[i])+=ha[i][l];
nw%=hk[i];
if(!nw)
for(int l=j;l<=m;l+=hk[i]) v[l]++;
}
}
an=0;
for(int i=1;i<=m;i++) if(v[i]==hn) ans[++an]=i;
printf("%d\n",an);
for(int i=1;i<=an;i++) printf("%d\n",ans[i]);
return 0;
}