BZOJ3751: [NOIP2014]解方程

数这么大不可能真去写高精度…
那么可以考虑模下的解,当模数多的时候可以看成就是方程的解
论良好的模数和常数的重要性….
对于每个模数pi,带0~pi进方程判是否合法(秦九韶),然后枚举1~m每个模数下都满足就认为他满足

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn = 110;
const int maxm = 1001000;
const int hn = 4;

char str[110000];
ll hk[hn]={10099,23333,24109,20011};
ll ha[hn][maxn];
int v[maxm];
int n,m;
int an,ans[maxm];

int main()
{
    /*while(1)
    {scanf("%d",&n); int i;
    for(i=2;i*2<=n;i++) if(n%i==0) break;
    printf("%d\n",i*i>n?1:-1);}*/

    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++)
    {
        scanf("%s",str);
        int len=strlen(str);
        int fl=1;
        if(str[0]=='-') fl=-1;
        int at=fl==1?0:1;
        for(int k=0;k<hn;k++)
        {
            int l=0;
            for(int j=at;j<len;j++)
                l=(l*10+str[j]-'0')%hk[k];
            if(fl==-1) l=-l;
            ha[k][i]=l;
        }
    }

    for(int i=0;i<hn;i++)
    {
        for(ll j=0;j<hk[i];j++)
        {
            ll nw=ha[i][n];
            for(int l=n-1;l>=0;l--)
                ((nw*=j)%=hk[i])+=ha[i][l];
            nw%=hk[i];
            if(!nw) 
                for(int l=j;l<=m;l+=hk[i]) v[l]++;
        }
    }

    an=0;
    for(int i=1;i<=m;i++) if(v[i]==hn) ans[++an]=i;
    printf("%d\n",an);
    for(int i=1;i<=an;i++) printf("%d\n",ans[i]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>