筛出不超过m的质数,然后可以DP
f[i][j]=∑f[i−1][a]∗f[i−1][b](a xor b=j)
然后可以快速幂
这时候就需要FWT了
学了一下FWT,Orz PoPoQQQ
因为不是FFT,不会有精度问题也没有指数问题,所以可以在快速幂前转FWT,快速幂算完后再DWT转回来
code:
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 70000;
const ll Mod = 1e9+7;
const ll N2 = Mod+1ll>>1;
int p[maxn],pri;
bool v[maxn];
void pre()
{
v[0]=v[1]=true;
for(int i=2;i<maxn;i++)
{
if(!v[i]) p[++pri]=i;
for(int j=1;j<=pri;j++)
{
int k=p[j]*i;
if(k>=maxn) break;
v[k]=true;
if(i%p[j]==0) break;
}
}
}
int n,N;
ll st[maxn],ret[maxn];
void FWT(ll f[],int m,int sig)
{
if(m==1) return;
int t=m>>1;
for(int i=0;i<t;i++)
{
(f[i]+=f[i+t])%=Mod;
f[i+t]=(f[i]-(f[i+t]<<1)+Mod)%Mod;
if(sig==-1) (f[i]*=N2)%=Mod,(f[i+t]*=N2)%=Mod;
}
FWT(f,t,sig); FWT(f+t,t,sig);
}
void pw(int k)
{
st,ret;
for(;k;k>>=1)
{
if(k&1) for(int j=0;j<N;j++) (ret[j]*=st[j])%=Mod;
for(int j=0;j<N;j++) (st[j]*=st[j])%=Mod;
}
}
int main()
{
pre();
int k;
while(scanf("%d%d",&k,&n)!=EOF)
{
N=1; while(N<=n) N<<=1;
for(int i=0;i<N;i++) st[i]=0ll;
for(int i=0;i<=n;i++) st[i]=v[i]?0ll:1ll;
for(int i=0;i<maxn;i++) ret[i]=0ll;
ret[0]=1ll;
FWT(ret,N,1); FWT(st,N,1);
pw(k);
FWT(ret,N,-1);
if(ret[0]<0) ret[0]+=Mod;
printf("%lld\n",ret[0]);
}
return 0;
}