BZOJ4589: Hard Nim

筛出不超过m的质数,然后可以DP
f[i][j]=f[i1][a]f[i1][b](a xor b=j)
然后可以快速幂
这时候就需要FWT了

学了一下FWT,Orz PoPoQQQ

因为不是FFT,不会有精度问题也没有指数问题,所以可以在快速幂前转FWT,快速幂算完后再DWT转回来

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn = 70000;
const ll Mod = 1e9+7;
const ll N2 = Mod+1ll>>1;

int p[maxn],pri;
bool v[maxn];
void pre()
{
    v[0]=v[1]=true;
    for(int i=2;i<maxn;i++)
    {
        if(!v[i]) p[++pri]=i;
        for(int j=1;j<=pri;j++)
        {
            int k=p[j]*i;
            if(k>=maxn) break;
            v[k]=true;
            if(i%p[j]==0) break;
        }
    }
}

int n,N;
ll st[maxn],ret[maxn];
void FWT(ll f[],int m,int sig)
{
    if(m==1) return;
    int t=m>>1;
    for(int i=0;i<t;i++)
    {
        (f[i]+=f[i+t])%=Mod;
        f[i+t]=(f[i]-(f[i+t]<<1)+Mod)%Mod;
        if(sig==-1) (f[i]*=N2)%=Mod,(f[i+t]*=N2)%=Mod;
    }
    FWT(f,t,sig); FWT(f+t,t,sig);
}

void pw(int k)
{
    st,ret;
    for(;k;k>>=1)
    {
        if(k&1) for(int j=0;j<N;j++) (ret[j]*=st[j])%=Mod;
        for(int j=0;j<N;j++) (st[j]*=st[j])%=Mod;
    }
}

int main()
{
    pre();


    int k;
    while(scanf("%d%d",&k,&n)!=EOF)
    {
        N=1; while(N<=n) N<<=1;
        for(int i=0;i<N;i++) st[i]=0ll;
        for(int i=0;i<=n;i++) st[i]=v[i]?0ll:1ll;
        for(int i=0;i<maxn;i++) ret[i]=0ll;
        ret[0]=1ll;

        FWT(ret,N,1); FWT(st,N,1);
        pw(k);
        FWT(ret,N,-1);
        if(ret[0]<0) ret[0]+=Mod;
        printf("%lld\n",ret[0]);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值