注意到只能建2个塔,暴力枚举是k(n*m)^2的
但可以发现我们枚举了第一个塔后,第二个塔没有必要枚举,可以预处理第二个塔放在每个位置的价值,塞进一个堆里(事实上不需要堆…排个序就行了,还省个log…)
考虑到两个塔覆盖了重复的点只算一次,如果堆顶的塔与当前枚举的塔冲突就把他取出来算一下贡献,把所有冲突的拿出来后计算完贡献再把他们放回去,最多k^2个重复,复杂度
O(nmk2log(nm))
(这个log充分显示了我的智障…
code:
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
inline void up(int &x,const int &y){if(x<y)x=y;}
const int maxr = 110;
const int maxc = 110;
const int maxn = 11000;
const int maxk = 10;
int dx[maxk],dy[maxk];
int a[maxr][maxc];
int n,m,K,N;
struct node{int i,j,x;};
inline bool operator <(const node x,const node y){return x.x<y.x;}
priority_queue<node>q;
bool v[maxr][maxc];
node t[maxn]; int tp;
int cal(const int i,const int j)
{
int re=0;
for(int k=0;k<K;k++) if(i+dx[k]>0&&i+dx[k]<=n&&j+dy[k]>0&&j+dy[k]<=m)
re+=a[i+dx[k]][j+dy[k]];
return re;
}
void Mark(const int i,const int j,int &re)
{
re=0;
for(int k=0;k<K;k++) if(i+dx[k]>0&&i+dx[k]<=n&&j+dy[k]>0&&j+dy[k]<=m)
{
int x=i+dx[k],y=j+dy[k];
v[x][y]=true; re+=a[x][y];
}
}
void remark(const int i,const int j)
{
for(int k=0;k<K;k++) if(i+dx[k]>0&&i+dx[k]<=n&&j+dy[k]>0&&j+dy[k]<=m)
{
int x=i+dx[k],y=j+dy[k];
v[x][y]=false;
}
}
bool check(const int i,const int j,int &x)
{
x=0; bool flag=false;
for(int k=0;k<K;k++) if(i+dx[k]>0&&i+dx[k]<=n&&j+dy[k]>0&&j+dy[k]<=m)
{
if(v[i+dx[k]][j+dy[k]]) flag=true;
else x+=a[i+dx[k]][j+dy[k]];
}
return flag;
}
char str[maxc];
int main()
{
int tcase; scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d%d",&n,&m,&K); N=n*m;
for(int i=1;i<=n;i++)
{
scanf("%s",str);
for(int j=0;j<m;j++) a[i][j+1]=str[j]-'0';
}
for(int i=0;i<K;i++) scanf("%d%d",&dx[i],&dy[i]);
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
q.push((node){i,j,cal(i,j)});
}
int re=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int temp,cc=0; Mark(i,j,temp);
while(!q.empty())
{
const node now=q.top();
int tmp;
if(!check(now.i,now.j,tmp)) { up(cc,temp+now.x); break; }
up(cc,temp+tmp);
q.pop(); t[++tp]=now;
}
up(re,cc);
remark(i,j);
while(tp) q.push(t[tp--]);
}
}
printf("%d\n",re);
}
return 0;
}