深度学习-吴恩达2


第二门课

第一周

数据集的组织

根据经验,我建议大家要确保验证集和测试集的数据来自同一分布,关于这个问题我也会多讲一些。因为你们要用验证集来评估不同的模型,尽可能地优化性能。如果验证集和测试集来自同一个分布就会很好。

偏差、方差

主要研究的是训练集误差和验证集方差

L2正则化

dropout

如何实施dropout呢?方法有几种,接下来我要讲的是最常用的方法,即inverted dropout(反向随机失活)
最后,我们向外扩展 a [ 3 ] a^{[3]} a[3],用它除以0.8,或者除以keep-prob参数。
a [ 3 ] / = k e e p − p r o b a^{[3]}/=keep-prob a[3]/=keepprob
下面我解释一下为什么要这么做,为方便起见,我们假设第三隐藏层上有50个单元或50个神经元,在一维上 a [ 3 ] a^{[3]} a[3]是50,我们通过因子分解将它拆分成 50 × m 50×m 50×m维的,保留和删除它们的概率分别为80%和20%,这意味着最后被删除或归零的单元平均有10(50×20%=10)个,现在我们看下 z [ 4 ] z^{\lbrack4]} z[4] z [ 4 ] = w [ 4 ] a [ 3 ] + b [ 4 ] z^{[4]} = w^{[4]} a^{[3]} + b^{[4]} z[4]=w[4]a[3]+b[4],我们的预期是, a [ 3 ] a^{[3]} a[3]减少20%,也就是说 a [ 3 ] a^{[3]} a[3]中有20%的元素被归零,为了不影响 z [ 4 ] z^{\lbrack4]} z[4]的期望值,我们需要用 w [ 4 ] a [ 3 ] / 0.8 w^{[4]} a^{[3]}/0.8 w[4]a[3]/0.8,它将会修正或弥补我们所需的那20%, a [ 3 ] a^{[3]} a[3]的期望值不会变,划线部分就是所谓的dropout方法。
在这里插入图片描述
注意:一般在测试阶段不使用dropout

dropout一大缺点就是代价函数 J J J不再被明确定义,每次迭代,都会随机移除一些节点,如果再三检查梯度下降的性能,实际上是很难进行复查的。定义明确的代价函数 J J J每次迭代后都会下降,因为我们所优化的代价函数 J J J实际上并没有明确定义,或者说在某种程度上很难计算,所以我们失去了调试工具来绘制这样的图片。我通常会关闭dropout函数,将keep-prob的值设为1,运行代码,确保J函数单调递减。然后打开dropout函数,希望在dropout过程中,代码并未引入bug。我觉得你也可以尝试其它方法,虽然我们并没有关于这些方法性能的数据统计,但你可以把它们与dropout方法一起使用。

其他正则化方法

数据扩增

图像翻转、变形、剪切、缩放,

因为训练集有冗余,这虽然不如我们额外收集一组新图片那么好,但这样做节省了获取更多猫咪图片的花费。
这些额外的假的数据无法包含像全新数据那么多的信息,但我们这么做基本没有花费,代价几乎为零,除了一些对抗性代价。以这种方式扩增算法数据,进而正则化数据集,减少过拟合比较廉价。

early stoping

绘制训练误差(代价函数误差)的曲线,绘制验证集误差的曲线,
在这里插入图片描述

当你还未在神经网络上运行太多迭代过程的时候,参数 w w w接近0,因为随机初始化 w w w值时,它的值可能都是较小的随机值,所以在你长期训练神经网络之前 w w w依然很小,在迭代过程和训练过程中 w w w的值会变得越来越大,比如在这儿,神经网络中参数 w w w的值已经非常大了,所以early stopping要做就是在中间点停止迭代过程,我们得到一个 w w w值中等大小的弗罗贝尼乌斯范数,与 L 2 L2 L2正则化相似,选择参数w范数较小的神经网络,但愿你的神经网络过度拟合不严重。
术语early stopping代表提早停止训练神经网络

在机器学习中,超级参数激增,选出可行的算法也变得越来越复杂。我发现,如果我们用一组工具优化代价函数 J J J,机器学习就会变得更简单,在重点优化代价函数 J J J时,你只需要留意 w w w b b b J ( w , b ) J(w,b) J(w,b)的值越小越好,你只需要想办法减小这个值,其它的不用关注。然后,预防过拟合还有其他任务,换句话说就是减少方差,这一步我们用另外一套工具来实现,这个原理有时被称为“正交化”。思路就是在一个时间做一个任务

early stopping的主要缺点就是你不能独立地处理这两个问题,因为提早停止梯度下降,也就是停止了优化代价函数 J J J,因为现在你不再尝试降低代价函数 J J J,所以代价函数 J J J的值可能不够小,同时你又希望不出现过拟合,你没有采取不同的方式来解决这两个问题,而是用一种方法同时解决两个问题,这样做的结果是我要考虑的东西变得更复杂。

如果不用early stopping,另一种方法就是 L 2 L2 L2正则化,训练神经网络的时间就可能很长。我发现,这导致超级参数搜索空间更容易分解,也更容易搜索,但是缺点在于,你必须尝试很多正则化参数 λ \lambda λ的值,这也导致搜索大量 λ \lambda λ值的计算代价太高。

Early stopping的优点是,只运行一次梯度下降,你可以找出 w w w的较小值,中间值和较大值,而无需尝试 L 2 L2 L2正则化超级参数 λ \lambda λ的很多值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值