基于结构感知图学习的正-无标签节点分类,Positive-Unlabeled Node Classification with Structure-aware Graph Learning

上一期讲了Dist-PU loss,这一期讲一下Dist-PU loss在图上的应用。

《Positive-Unlabeled Node Classification with Structure-aware Graph Learning》这一篇文章。

在这篇文章中,主要解决的是二分类的问题。基于结构感知的节点分类:

摘要主要讲了图节点分类的常用案例,并且提出了基于图结构对P-U节点进行分类,就是假定数据中只有正向标签和无标签两种类型,然后进行分类,分出正负标签。 

 

图1. 从引文网络中挖掘特定领域的论文。 

在这里详细介绍P-U学习:PU (positive -unlabeled)学习是指二分类问题中的一种特殊情况, 即部分训练数据被标记为正数据,其余未标记的数据可以是正 数据,也可以是负数据。现有的PU学习方法大致可以分为基于 先验的方法和基于伪标签的方法两种。 

基于先验的方法假设类先验的知识,即未标记样本中正样本的比例,并利用它来设计用于PU学习的特殊损失函数。例如 uPU[4]、nnPU[9]和Dist-PU[20],它们基于不同的假设具有不同 形式的损失函数。其他相关工作,如[2,6],将其他类型的监督引入到PU学习中,例如[2]中使用自定进度的模型蒸馏。

相比之下,基于伪标签的方法使用两个启发式步骤:首先, 从未标记的数据中识别可靠的负样本,然后使用额外的伪标签进行(半)监督学习。例如,PUbN[7]使用nnPU预训练的模型来识别未标记数据中的高置信度负样本。PULNS[10]引入强化学习来获得有效的负样本选择器。

下面介绍了P-U loss的设计方案和公式推理证明思路。

加入结构正则化项:虽然距离感知PU损失在非带链节点之间分配不同的优先级,但它仍然忽略了节点之间的成对关系。因此,我们提出了一种基于图结构的正则化项,以促进对相邻节点的相似表示和最终预测。

总结:在本文中,我们提出利用图结构有利于P-U节点分类。我们首先提出了一种距离感知损失函数,利用图结构中的同质性为无标签节点引入更准确的监督。理论分析表明,最小化所提出的损失会导致最小化正标签和负标签的预期损失。我们还提出了一种基于图结构的正则化器,以进一步提高模型性能。不同数据集的实验结果证明了我们所提出方法的有效性。

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学小达人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值