PU --- > 无偏PU learning简介

PU learning

背景

PU learning(positive-unlabeled learning),即我们只有正样本和未标注的样本,以此进行分类学习。
其可在以下几个领域内应用:

  1. 检索
    从大量无标注的样本中选取特定的样本,比如人脸标注
  2. 异常检测
    包括inlier-based outlier 检测
  3. 序列数据检测
    负样本的分布随着时间改变,这样传统的分类将不再适合,PU 只需要更新未标注样本,这样的花销更小,比如垃圾邮件检测,由于存在对抗,负样本(垃圾邮件)的形式一直在变,而非垃圾则一般相对稳定状态。
    本文介绍了最近pu learning的几个研究进展。

PU 分类

目前 PU的方法可分为两类;

  • 第一类方法
    也称为两步法:从unlabeled 数据识别出有效的负样本,然后利用正负样本训练分类器。
  • 第二类方法
    全部将未标注的样本作为负样本训练,同时将负样本的赋予一个较小的权重值。

然而,第一类方法在识别有效负样本时比较依赖于经验,需要对相关的业务背景有良好的理解;第二类方法则依赖于未标注样本权重的设置,并且如果loss函数不合适,将存在biased误差。在第二类方法中,为了改进目前学习存在偏差的问题,无偏 PU learning被引入。

uPU learning

我们有一个正的数据集 χ \chi χ,一个未标注数据集 χ ′ \chi' χ,即
χ : = { x i } i = 1 n   = p ( x ∣ y = 1 ) χ ′ : = { x j ′ } j = 1 n ′   = p ( x ) p ( x ) : = π p ( x ∣ y = 1 ) + ( 1 − π ) p ( x ∣ y = − 1 ) \chi:=\{x_i\}_{i=1}^n ~=p(x|y=1)\\ \chi':=\{x_j'\}_{j=1}^{n'}~=p(x)\\ p(x):=\pi p(x|y=1)+(1-\pi)p(x|y=-1) χ:={ xi}i=1n =p(xy=1)χ:={ xj}j=1n =p(x)p(x):=πp(xy=1)+(1π)p(xy=1)
其中 π \pi π是unlabel样本中正样本的比例,为超参数。
对于普通的分类
R ^ p n ( g ) = π p R ^ p + + π n R ^ n − ( g ) − − − − − ( 1 ) \hat R_{pn}(g)=\pi_p\hat R_p^{+} + \pi_n \hat R_n^{-}(g) -----(1) R^pn(g)=πpR^p++πnR^n(g)(1)

风险函数
R u − ( g ) = 1 n − ∑ x = 1 n − l ( g ( x i ) , − 1 ) = ∑ x p ( x ) l ( g ( x i ) , − 1 ) = ∑ x p ( y = 1 ) p ( x ∣ y = 1 ) l ( g ( x i ) , − 1 ) + ∑ x p ( y = − 1 ) p ( x ∣ y = − 1 ) l ( g ( x i ) , − 1 ) = π p ∑ x p ( x ∣ y = 1 ) l ( g ( x i ) , − 1 ) + ( 1 − π p ) ∑ x p ( x ∣ y = − 1 ) l ( g ( x i ) , − 1 ) = π p ∑ x p p ( x ) l ( g ( x ( x i ) , − 1 ) ) + ( 1 − π p

  • 9
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值