论文阅读 LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy

标题:LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy

会议:IJCAI-21


论文内容
12
研究内容LDP+FL
解决问题/挑战1. 权重weight difference 2. 由于w高维和查询迭代带来的隐私预算 ϵ \epsilon ϵ爆炸问题
创新点(贡献)1. new data perturbation with adaptive range 2. parameter shuffling mechanism
模型在这里插入图片描述
1. Data Perturbation with Adaptive Range在这里插入图片描述
2. Parameter Shuffling在这里插入图片描述
数据MNIST,Fashion-MNIST and CIFAR-10
与其他文献比较
是否有其他方法/技术解决问题
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TMummy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值