论文阅读 Local Differential Privacy-Based Federated Learning for Internet of Things

标题:Local Differential Privacy-Based Federated Learning for Internet of Things

期刊: IEEE Internet of Things Journal, Vol. 8, No. 11, June 1, 2021

1. 背景/已有方法存在问题

  • 应用环境:Internet of Vehicles (IoV) 车辆网络
  • 机器学习模型数据: real-time traffic information
  • 隐私信息:users’ location information, traffic information, motor vehicle information, environmental information, etc.
  • 车辆与云之间的频繁通信 (frequent communication)带来的通信成本问题

2. 论文解决方法

目的:保护隐私+降低通信成本
解决方案:联邦学习FL+本地差分隐私LDP
  • 4个LDP机制来扰动梯度
  • Three-Outputs mechanism ——》隐私预算 ϵ \epsilon ϵ小时,high accuracy——》编码成2位,降低通信成本
  • optimal piecewise mechanism (PM-OPT)——》隐私预算 ϵ \epsilon ϵ大时,maximize the performance
  • suboptimal mechanism (PM-SUB)——》PM-OPT
  • hybrid mechanism by combining Three-Outputs and PM-SUB
  • LDP-FedSGD algorithm——》train the model

3. 贡献/创新点

  • LDP-FedSGD——》novel LDP机制——》Three-Outputs–3个输出( ϵ \epsilon ϵ小时) 和PM-SUB–无限可能输出( ϵ \epsilon ϵ大时)表现优异
    • PM-OPT——》次优PM-SUB
    • Three-Outputs + PM-SUB——》混合机制HM-TP
  • 将 PM-SUB 和PM-OPT机制 连续的输出范围 离散化——》实用性+减小通信成本
  • 实验——》real-world data sets and synthetic data sets(真实数据集+合成数据集)——》估计数据的平均频率和经验风险最小化——》较高准确性

4. 模型/方法

LDP-FedSGD系统模型

5. LDP-FedSGD算法

在这里插入图片描述

6. 与其他隐私保护FL范式比较

(1) Distributed/Centralized Perturbation

(2) User-Level/Record-Level Privacy Protection

4种类别
1)More Actions1) user-level privacy protection with distributed perturbation (ULDP)
2) record-level privacy protection with distributed perturbation (RLDP)
3) record-level privacy protection with centralized perturbation (RLCP)
4) user-level privacy protection with centralized perturbation (ULCP)

表三 4种类别比较
privacy granularity and place of perturbationprivacy propertyadversary model
$\epsilon$-LDP(defined for distributed perturbation$\epsilon$-ULDPdefend against a honest-but-curious aggregator & external attacks after model publishing
$\epsilon$-DP with distributed perturbation$\epsilon$-RLDP
$\epsilon$-DP with centralized perturbation$\epsilon$-RLCPtrusted aggregator; defend against external attacks after model publishing
user-level privacy with centralized perturbation$\epsilon$-ULCP

7. 论文PROBLEM FORMATION

在这里插入图片描述
在这里插入图片描述

8. MECHANISMS FOR ESTIMATION OF SINGLE NUMERIC ATTRIBUTE

提出4种LDP机制: Three-Outputs, PM-OPT, PM-SUB, and HM-TP.

在这里插入图片描述

A. Three-Outputs Mechanism

在这里插入图片描述

B. PM-OPT Mechanism

在这里插入图片描述

C. PM-SUB Mechanism

在这里插入图片描述

D. Discretization Postprocessing

在这里插入图片描述

E. HM-TP Mechanism

9. MECHANISMS FOR ESTIMATION OF MULTIPLE NUMERIC ATTRIBUTES

多属性收集方法

  • straightforward approach,隐私预算为 ϵ / d \epsilon/d ϵ/d

  • Duchi et al.'s solution [22]

  • Wang et al.'s solution[8]

在这里插入图片描述

部分参考文献

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Stat., 2017, pp. 1273–1282. FedAVG

[5] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous SGD,” 2016. [Online]. Available: arXiv:1604.00981. FedSGD

[6] J. Duchi, M. J. Wainwright, and M. I. Jordan, “Local privacy and minimax bounds: Sharp rates for probability estimation,” in Advances in Neural Information Processing Systems. Red Hook, NY, USA: Curran,
2013, pp. 1529–1537.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proc. Theory Cryptogr. Conf. (TCC), 2006, pp. 265–284. Laplace

[8] N. Wang et al., “Collecting and analyzing multidimensional data with local differential privacy,” in Proc. IEEE Int. Conf. Data Eng. (ICDE), 2019, pp. 638–649.

[22] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Minimax optimal procedures for locally private estimation,” J. Amer. Stat. Assoc., vol. 113, no. 521, pp. 182–201, 2018.

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
局部差分隐私的操纵攻击是指攻击者试图影响隐私保护机制以获取敏感信息的行为。该攻击针对局部差分隐私机制的特性和缺点进行利用,以窃取隐私数据或干扰数据发布的结果。 局部差分隐私的目标是在保护个体隐私的前提下,提供对于整体数据集的有意义的分析结果。然而,攻击者可通过操纵自己的个体数据或其他数据的投入,来影响数据分析结果。例如,攻击者可能故意修改或篡改自己的数据,以改变数据发布的结论,或者通过协作或串通他人进行攻击。 操纵攻击的目的是干扰数据发布的结果,以推断出更多的隐私信息或获得误导性的数据分析结果。攻击者可能通过加入虚假的数据或者删除真实的数据来扰乱数据集的特性,使得发布的结果偏离真实情况。这种攻击可能会导致分析人员得出错误的结论或泄露隐私信息。 对抗局部差分隐私操纵攻击的方法包括对数据进行更严格的验证和校验、采用更复杂的算法进行数据发布,以及增加对攻击行为的监测和检测。此外,用户和数据发布者在数据分享和数据发布过程中需要保持警惕,增强对潜在攻击的认识和防范意识。 总之,局部差分隐私的操纵攻击是一种针对隐私保护机制的攻击行为,可通过操纵个体数据或其他数据的投入来干扰数据发布的结果。为了应对这种攻击,需要采取相应的安全措施和对攻击行为进行检测和防范。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TMummy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值